NCERT Solutions for Class 7 Maths Chapter 13 – Exponents and Powers. Furthermore, here we’ve provided you with the latest solution for Class 7 Maths Chapter 13 – Exponents and Powers. As a result here you’ll find solutions to all the exercises. This NCERT Class 7 solution will help you to score good marks in your exam.
Students can refer to our solution for NCERT Class 7 Maths Chapter 13 – Exponents and Powers. The Chapter 13 Solution of NCERT will help students prepare for the exams and easily crack the exam. Below we’ve provided you with the exercise-wise latest solution.
NCERT Solutions for Class 7 Maths Chapter 13 – Exponents and Powers Exercise Wise Solution
Exercise 13.1 – Page 252 of NCERT
Exercise 13.2 – Page 260 of NCERT
Exercise 13.3 – Page 263 of NCERT
NCERT Solutions for Class 7 Maths Chapter 13 – Exponents and Powers Exercise 13.1 Solution
Here you’ll find NCERT Chapter 13 – Exponents and Powers Exercise 13.1 Solution.
Exercise 13.1: Solutions of Questions on Page Number: 252
Q1: Find the value of:
(i) 26 (ii) 93
(iii) 112 (iv)54
Answer:
(i) 26 = 2 x 2 x 2 x 2 x 2 x 2 = 64
(ii) 93 = 9 x 9 x 9 = 729
(iii)112 = 11 x 11 = 121
(iv)54 = 5 x 5 x 5 x 5 = 625
Q2: Express the following in exponential form:
(i) 6 x 6 x 6 x 6 (ii) t x t
(iii) b x b x b x b (iv) 5 x 5 x 7 x 7 x 7
(v) 2 x 2 x a x a (vi) a x a x a x c x c x c x c x d
Answer:
(i) 6 x 6 x 6 x 6 = 64
(ii) t x t= t2
(iii) b x b x b x b = b4
(iv) 5 x 5 x 7 x 7 x 7 = 52 x 73
(v) 2 x 2 x a x a = 22 x a2
(vi) a x a x a x c x c x c x c x d = a3 c4 d
Q3: Express the following numbers using exponential notation:
(i) 512 (ii) 343
(iii) 729 (iv) 3125
Answer :
(i) 512 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 29
(ii) 343 = 7 x 7 x 7 = 73
(iii) 729 = 3 x 3 x 3 x 3 x 3 x 3 = 36
(iv) 3125 = 5 x 5 x 5 x 5 x 5 = 55
Q4: Identify the greater number, wherever possible, in each of the following?
(i) 43 or 34 (ii) 53 or 35
(iii) 28 or 82 (iv) 1002 or 2100 (v) 210 or 102
Answer:
(i) 43 = 4 x 4 x 4 = 64
34 = 3 x 3 x 3 x 3 = 81
Therefore, 34 > 43
(ii) 53 = 5 x 5 x 5 =125
35 = 3 x 3 x 3 x 3 x 3 = 243
Therefore, 35 > 53
(iii) 28 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 256 82 = 8 x 8 = 64
Therefore, 28 > 82
(iv)1002 or 2100
210 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 1024
2100 = 1024 x 1024 x 1024 x 1024 x 1024 x 1024 x 1024 x 1024 x 1024 x 1024
1002 = 100 x 100 = 10000
Therefore, 2100 > 1002
(v) 210 and 102
210 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 = 1024
102 = 10 x 10 = 100
Therefore, 210 > 102
Q5: Express each of the following as product of powers of their prime factors:
(i) 648 (ii) 405
(iii) 540 (iv) 3,600
Answer:
(i) 648 = 2 x 2 x 2 x 3 x 3 x 3 x 3 = 23. 34
(ii) 405 = 3 x 3 x 3 x 3 x 5 = 34 . 5
(iii) 540 = 2 x 2 x 3 x 3 x 3 x 5 = 22. 33. 5
(iv) 3600 = 2 x 2 x 2 x 2 x 3 x 3 x 5 x 5 = 24. 32. 52
Q6: Simplify:
(i) 2 x 103 (ii) 72 x 22 (iii) 23 x 5 (iv) 3 x 44
(v) 0 x 102 (vi) 52 x 33
(vii) 24 x 32 (viii) 32 x 104
Answer:
(i) 2 x 103 = 2 x 10 x 10 x 10 = 2 x 1000 = 2000
(ii) 72 x 22 = 7 x 7 x 2 x 2 = 49 x 4 = 196
(iii) 23 x 5 = 2 x 2 x 2 x 5 = 8 x 5 = 40
(iv) 3 x 44 = 3 x 4 x 4 x 4 x 4 = 3 x 256 = 768
(v) 0 x 102 = 0 x 10 x 10 = 0
(vi) 52 x 33 = 5 x 5 x 3 x 3 x 3 = 25 x 27 = 675
(vii)24 x 32 = 2 x 2 x 2 x 2 x 3 x 3 = 16 x 9 = 144
(viii) 32 x 104 = 3 x 3 x 10 x 10 x 10 x 10 = 9 x 10000 = 90000
Q7: Simplify:
(i) (- 4)3 (ii) (- 3) x (- 2)3
(iii) (- 3)2 x (- 5)2 (iv)(- 2)3 x (-10)3
Answer:
(i) (-4)3 = (-4) x (-4) x (-4) = -64
(ii) (-3) x (-2)3 = (-3) x (-2) x (-2) x (-2) = 24
(iii) (-3)2 x (-5)2 = (-3) x (-3) x (-5) x (-5) = 9 x 25 = 225
(iv) (-2)3 x (-10)3 = (-2) x (-2) x (-2) x (-10) x (-10) x (-10)
= (-8) x (-1000) = 8000
Q8: Compare the following numbers:
(i) 2.7 x 1012; 1.5 x 108
(ii) 4 x 1014; 3 x 1017
Answer:
(i) 2.7 x 1012; 1.5 x 108
2.7 x 1012 > 1.5 x 108 (ii)
4 x 1014; 3 x 1017
3 x 1017 > 4 x 1014
NCERT Solutions for Class 7 Maths Chapter 13 – Exponents and Powers Exercise 13.2 Solution
Here you’ll find NCERT Chapter 13 – Exponents and Powers Exercise 13.2 Solution.
Exercise 13.2: Solutions of Questions on Page Number: 260
Q1: Using laws of exponents, simplify and write the answer in exponential form:
(i) 32 × 34 × 38 (ii) 615 ÷ 610 (iii) a3 × a2
(iv) 7x× 72 (v)
(vii) a4 × b4 (viii) (34)3
(vi) 25 × 55
(ix) (x) 8t ÷ 82
Answer:
(i) 32 × 34 × 38 = (3)2+4+8 (am x an = am+n)
= 314
(ii) 615 ÷ 610 = (6)15 – 10 (am ÷ an = am–n)
= 65
(iii) a3 x a2 = a(3 + 2) (am x an = am+n)
= a5
(iv) 7x + 72 = 7x + 2 (am x an = am+n)
(v) (52)3 ÷ 53
= 52×3 ÷ 53 (am)n = amn
= 56 ÷ 53
= 56 – 3 (am ÷ an = am–n)
= 53
(vi) 25 x 55
= (2 x 5)5 [am x bm = (a x b)m]
= 105
(vii) a4 x b4
= (ab)4 [am x bm = (a x b)m]
(viii) (34)3 = 34 x 3 = 312 (am)n = amn
(ix) (220 ÷ 215) x 23
= (220 – 15) x 23 (am ÷ an = am–n)
= 25 x 23
= (25+3) (am x an = am+n)
= 28
(x) 8t ÷ 82 = 8(t – 2) (am ÷ an = am–n)
Q2: Simplify and express each of the following in exponential form:
(i)
(ii)
(iii)
(iv)
(v)
(vi) 20 + 30 + 40
(vii) 20 × 30 × 40
(viii) (30 + 20) × 50
(ix)
(x)
(xi)
(xii)
Answer:
(i)
(ii) [(52)3 × 54] ÷ 57
= [52 × 3 × 54] ÷ 57 (am)n = amn =
[56 × 54] ÷ 57
= [56 + 4] ÷ 57 (am × an = am+n)
= 510 ÷ 57
= 510-7 (am ÷ an = am – n)
= 53
(iii) 254 ÷ 53 = (5 ×5)4 ÷ 53
= (52)4÷ 53
= 52 × 4 ÷ 53 (am)n = amn = 58 ÷ 53
= 58 – 3 (am ÷ an = am – n)
= 55
(iv)
= 1 × 7 × 115 = 7 × 115
(v)
(vi) 20 + 30 + 40 = 1 + 1 + 1 = 3
(vii) 20 × 30 × 40 = 1 × 1 × 1 = 1
(viii) (30 + 20) × 50 = (1 + 1) × 1 = 2
(ix)
(x)
(xi)
(xii) (23 × 2)2 = (am × an = am+n)
= (24)2 = 24 × 2 (am)n = amn
= 28
Q3: Say true or false and justify your answer:
(i) 10 x 1011 = 10011 (ii) 23 > 52
(iii) 23 x 32 = 65 (iv) 30 = (1000)0
Answer:
(i) 10 x 1011 = 10011
L.H.S. = 10 x 1011 = 1011 + 1 (am x an = am+n)
= 1012
R.H.S. = 10011 = (10 x 10)11= (102)11
= 102 x 11 = 1022 (am)n = amn
As L.H.S. ≠ R.H.S.,
Therefore, the given statement is false.
(ii) 23 > 52
L.H.S. = 23 = 2 x 2 x 2 = 8
R.H.S. = 52 = 5 x 5 = 25 As 25 > 8,
Therefore, the given statement is false.
(iii) 23 x 32 = 65
L.H.S. = 23 x 32 = 2 x 2 x 2 x 3 x 3 = 72
R.H.S. = 65 = 7776 As L.H.S. ≠ R.H.S.,
Therefore, the given statement is false.
(iv) 30 = (1000)0
L.H.S. = 30 = 1
R.H.S. = (1000)0 = 1 = L.H.S.
Therefore, the given statement is true.
Q4: Express each of the following as a product of prime factors only in exponential form:
(i) 108 x 192 (ii) 270
(iii) 729 x 64 (iv) 768
Answer :
(i) 108 x 192
= (2 x 2 x 3 x 3 x 3) x (2 x 2 x 2 x 2 x 2 x 2 x 3)
= (22 x 33) x (26 x 3)
= 26 + 2 x 33 + 1 (am x an = am+n)
= 28 x 34
(ii) 270 = 2 x 3 x 3 x 3 x 5 = 2 x 33 x 5
(iii) 729 x 64 = (3 x 3 x 3 x 3 x 3 x 3) x (2 x 2 x 2 x 2 x 2 x 2)
= 36 x 26
(iv) 768 = 2 x 2 x 2 x 2 x 2 x 2 x 2 x 2 x 3 = 28 x 3
Q5: Simplify:
(i) (ii) (iii)
Answer :
(i)
(ii)
(iii)
NCERT Solutions for Class 7 Maths Chapter 13 – Exponents and Powers Exercise 13.3 Solution
Here you’ll find NCERT Chapter 13 – Exponents and Powers Exercise 13.3 Solution.
Exercise 13.3: Solutions of Questions on Page Number: 263
Q1: Write the following numbers in the expanded forms: 279404, 3006194, 2806196, 120719, 20068
Answer:
279404 = 2 x 105 + 7 x 104 + 9 x 103 + 4 x 102 + 0 x 101 + 4 x 100
3006194 = 3 x 106 + 0 x 105 + 0 x 104 + 6 x 103 + 1 x 102 + 9 x 101 + 4 x 100
2806196 = 2 x 106 + 8 x 105 + 0 x 104 + 6 x 103 + 1 x 102 + 9 x 101 + 6 x 100
120719 = 1 x 105 + 2 x 104 + 0 x 103 + 7 x 102 + 1 x 101 + 9 x 100
20068 = 2 x 104 + 0 x 103 + 0 x 102 + 6 x 101 + 8 x 100
Q2: Find the number from each of the following expanded forms:
(a) 8 x 104 + 6 x 103 + 0 x 102 + 4 x 101 + 5 x 100
(b) 4 x 105 + 5 x 103 + 3 x 102 + 2 x 100
(c) 3 x 104 + 7 x 102 + 5 x 100
(d) 9 x 105 + 2 x 102 + 3 x 101
Answer:
(a) 8 x 104 + 6 x 103 + 0 x 102 + 4 x 101 + 5 x 100
= 86045
(b) 4 x 105 + 5 x 103 + 3 x 102 + 2 x 100
= 405302
(c) 3 x 104 + 7 x 102 + 5 x 100
= 30705
(d) 9 x 105 + 2 x 102 + 3 x 101
= 900230
Q3: Express the following numbers in standard form:
(i) 5,00,00,000 (ii) 70,00,000
(iii) 3,18,65,00,000 (iv) 3,90,878
(v) 39087.8 (vi) 3908.78
Answer:
(i) 50000000 = 5 x 107
(ii) 7000000 = 7 x 106
(iii) 3186500000 = 3.1865 x 109
(iv) 390878 = 3.90878 x 105
(v) 39087.8 = 3.90878 x 104
(vi) 3908.78 = 3.90878 x 103
Q4: Express the number appearing in the following statements in standard form.
- The distance between Earth and Moon is 384,000,000 m.
- Speed of light in vacuum is 300,000,000 m/s.
- Diameter of the Earth is 1,27,56, 000 m.
- Diameter of the Sun is 1,400,000,000 m.
- In a galaxy there are on an average 100,000,000,000 stars.
- The universe is estimated to be about 12,000,000,000 years old.
- The distance of the Sun from the centre of the Milky Way Galaxy is estimated to be 300,000,000,000,000,000,000 m.
- 60,230,000,000,000,000,000,000 molecules are contained in a drop of water weighing 1.8 gm.
- The earth has 1,353,000,000 cubic km of sea water.
- The population of India was about 1,027,000,000 in March, 2001.
Answer :
(a) 3.84 x 108 m
(b) 3 x 108 m/s
(c) 1.2756 x 107 m
(d) 1.4 x 109 m
(e) 1 x 1011 stars
(f) 1.2 x 1010 years
(g) 3 x 1020 m
(h) 6.023 x 1022
(i) 1.353 x 109 cubic km
(j) 1.027 x 109
NCERT Class 7 Maths All Chapters Solution
Chapter 1: Integers
Chapter 2: Fractions and Decimals
Chapter 3: Data Handling
Chapter 4: Simple Equations
Chapter 5: Lines and Angles
Chapter 6: The Triangle and its Properties.
Chapter 7: Congruence of Triangles
Chapter 8: Comparing Quantities
Chapter 9: Rational Numbers
Chapter 10: Practical Geometry
Chapter 11: Perimeter and Area
Chapter 12: Algebraic Expression
Chapter 13: Exponents and Powers
Chapter 14: Symmetry
Chapter 15: Visualising Solid Shapes