NCERT Solutions for Class 8 Maths Chapter 14 – Factorisation. Furthermore, here we’ve provided you with the latest solution for Class 8 Maths Chapter 14 – Factorisation. As a result here you’ll find solutions to all the exercises. This NCERT Class 8 solution will help you to score good marks in your exam.

Students can refer to our solution for NCERT Class 8 Maths Chapter 14 – Factorisation. The Chapter 14 Solution of NCERT will help students prepare for the exams and easily crack the exam. Below we’ve provided you with the exercise-wise latest solution.

NCERT Solutions for Class 8 Maths Chapter 14 – Factorisation Exercise Wise Solution

Exercise 14.1 – Page 220 of NCERT
Exercise 14.2 – Page 223 of NCERT
Exercise 14.3 – Page 227 of NCERT
Exercise 14.4 – Page 228 of NCERT

NCERT Solutions for Class 8 Maths Chapter 14 – Factorisation Exercise 14.1 Solution

Here you’ll find NCERT Chapter 14 – Factorisation Exercise 14.1 Solution
Exercise 14.1: Solutions of Questions on Page Number: 220

Q1: Find the common factors of the terms

  1. 12x, 36
  1. 2y, 22xy
  1. 14pq, 28p2q2
  1. 2x, 3x2, 4
  1. 6abc, 24ab2, 12a2b
  2. 16x3, -4x2, 32x
  3. 10pq, 20qr, 30rp
  1. 3x2y3, 10x3y2, 6x2y2z

Answer:

  1. 12x = 2 x 2 x 3 x x

36 = 2 x 2 x 3 x 3

The common factors are 2, 2, 3.

And, 2 x 2 x 3 = 12

  1. 2y = 2 x y

22xy = 2 x 11 x x x y

The common factors are 2, y.

And, 2 x y = 2y

  1. 14pq = 2 x 7 x p x q

28p2q2 = 2 x 2 x 7 x p x p x q x q

The common factors are 2, 7, p, q.

And, 2 x 7 x p x q = 14pq

  1. 2x = 2 x x
    3x2 = 3 x x x x
    4 = 2 x 2

The common factor is 1.

  1. 6abc = 2 x 3 x a x b x c
    24ab2 = 2 x 2 x 2 x 3 x a x b x b
    12a2b = 2 x 2 x 3 x a x a x b

The common factors are 2, 3, a, b.

And, 2 x 3 x a x b = 6ab

  1. 16x3 = 2 x 2 x 2 x 2 x x x x x x
    -4x2 = -1 x 2 x 2 x x x x
    32x = 2 x 2 x 2 x 2 x 2 x x

The common factors are 2, 2, x.

And, 2 x 2 x x = 4x

  1. 10pq = 2 x 5 x p x q
    20qr = 2 x 2 x 5 x q x r
    30rp = 2 x 3 x 5 x r x p

The common factors are 2, 5.

And, 2 x 5 = 10

  1. 3x2y3 = 3 x x x x x y x y x y
    10x3y2 = 2 x 5 x x x x x x x y x y
    6x2y2z = 2 x 3 x x x x x y x y x z
    The common factors are x, x, y, y. And, x x x x y x y = x2y2

Q2: Factorise the following expressions

  1. 7x – 42
  1. 6p – 12q
  1. 7a2 + 14a
  2. -16z + 20z3
  1. 20l2m + 30 alm
  1. 5x2y – 15xy2
  2. 10a2 – 15b2 + 20c2
  1. -4a2 + 4ab – 4 ca
  1. x2yz + xy2z + xyz2
  1. ax2y + bxy2 + cxyz

Answer:

  1. 7x = 7 x x

42 = 2 x 3 x 7

The common factor is 7.

∴ 7x – 42 = (7 x x) – (2 x 3 x 7) = 7 (x – 6)

  1. 6p = 2 x 3 x p

12q = 2 x 2 x 3 x q

The common factors are 2 and 3.

∴ 6p – 12q = (2 x 3 x p) – (2 x 2 x 3 x q)

= 2 x 3 [p – (2 x q)]

= 6 (p – 2q)

  1. 7a2 = 7 x a x a

14a = 2 x 7 x a

The common factors are 7 and a.

∴ 7a2 + 14a = (7 x a x a) + (2 x 7 x a)

= 7 x a [a + 2] = 7a (a + 2)

  1. 16z = 2 x 2 x 2 x 2 x z

20z3 = 2 x 2 x 5 x z x z x z

The common factors are 2, 2, and z.

∴ -16z + 20z3 = – (2 x 2 x 2 x 2 x z) + (2 x 2 x 5 x z x z x z)

= (2 x 2 x z) [- (2 x 2) + (5 x z x z)]

= 4z (- 4 + 5z2)

  1. 20l2m = 2 x 2 x 5 x l x l x m

30alm = 2 x 3 x 5 x a x l x m

The common factors are 2, 5, l, and m.

∴ 20l2m + 30alm = (2 x 2 x 5 x l x l x m) + (2 x 3 x 5 x a x l x m)

= (2 x 5 x l x m) [(2 x l) + (3 x a)]

= 10lm (2l + 3a)

  1. 5x2y = 5 x x x x x y

15xy2 = 3 x 5 x x x y x y

The common factors are 5, x, and y.

∴ 5x2y – 15xy2 = (5 x x x x x y) – (3 x 5 x x x y x y)

= 5 x x x y [x – (3 x y)]

= 5xy (x – 3y)

  1. 10a2 = 2 x 5 x a x a
    15b2 = 3 x 5 x b x b
    20c2 = 2 x 2 x 5 x c x c

The common factor is 5.

10a2 – 15b2 + 20c2 = (2 x 5 x a x a) – (3 x 5 x b x b) + (2 x 2 x 5 x c x c)

= 5 [(2 x a x a) – (3 x b x b) + (2 x 2 x c x c)]

= 5 (2a2 – 3b2 + 4c2)

  1. 4a2 = 2 x 2 x a x a

4ab = 2 x 2 x a x b

4ca = 2 x 2 x c x a

The common factors are 2, 2, and a.

∴ -4a2 + 4ab – 4ca = – (2 x 2 x a x a) + (2 x 2 x a x b) – (2 x 2 x c x a)

= 2 x 2 x a [- (a) + b c]

= 4a (-a + b c)

  1. x2yz = x x x x y x z
    xy2z = x x y x y x z
    xyz2 = x x y x z x z

The common factors are x, y, and z.

x2yz + xy2z + xyz2 = (x x x x y x z) + (x x y x y x z) + (x x y x z x z)

= x x y x z [x + y + z]

= xyz (x + y + z)

  1. ax2y = a x x x x x y
    bxy2 = b x x x y x y
    cxyz = c x x x y x z

The common factors are x and y. a

Q3: Factorise

  1. x2 + xy + 8x + 8y
  1. 15xy – 6x + 5y – 2
  1. ax + bx ay by
  2. 15pq + 15 + 9q + 25p
  3. z – 7 + 7xy xyz

Answer:

  1. x2 + xy + 8x + 8y = x x x + x x y + 8 x x + 8 x y

= x (x + y) + 8 (x + y)

= (x + y) (x + 8)

  1. 15xy – 6x + 5y – 2 = 3 x 5 x x x y – 3 x 2 x x + 5 x y – 2

= 3x (5y – 2) + 1 (5y – 2)

= (5y – 2) (3x + 1)

  1. ax + bx ay by = a x x + b x x a x y b x y

= x (a + b) – y (a + b)

= (a + b) (x y)

(iv) 15pq + 15 + 9q + 25p = 15pq + 9q + 25p + 15

= 3 x 5 x p x q + 3 x 3 x q + 5 x 5 x p + 3 x 5

= 3q (5p + 3) + 5 (5p + 3)

= (5p + 3) (3q + 5)

(v) z – 7 + 7xy xyz = z x x y x z – 7 + 7 x x x y

= z (1 – xy) – 7 (1 – xy)

= (1 – xy) (z – 7)

NCERT Solutions for Class 8 Maths Chapter 14 – Factorisation Exercise 14.2 Solution

Here you’ll find NCERT Chapter 14 – Factorisation Exercise 14.2 Solution
Exercise 14.2: Solutions of Questions on Page Number: 223

Q1: Factorise the following expressions.
(i) a2 + 8a + 16

(ii) p2 – 10p + 25

(iii) 25m2 + 30m + 9

(iv) 49y2 + 84yz + 36z2 (v) 4x2 – 8x + 4

(vi) 121b2 – 88bc + 16c2

(vii) (l + m)2 – 4lm (Hint: Expand (l + m)2 first)

(viii) a4 + 2a2b2 + b4

Answer:

(i) a2 + 8a + 16 = (a)2 + 2 x a x 4 + (4)2

= (a + 4)2 [(x + y)2 = x2 + 2xy + y2]

(ii) p2 – 10p + 25 = (p)2 – 2 x p x 5 + (5)2

= (p – 5)2 [(a b)2 = a2 – 2ab + b2]

(iii) 25m2 + 30m + 9 = (5m)2 + 2 x 5m x 3 + (3)2

= (5m + 3)2 [(a + b)2 = a2 + 2ab + b2]

(iv) 49y2 + 84yz + 36z2 = (7y)2 + 2 x (7y) x (6z) + (6z)2

= (7y + 6z)2 [(a + b)2 = a2 + 2ab + b2] (v) 4x2 – 8x + 4 = (2x)2 – 2 (2x) (2) + (2)2

= (2x – 2)2 [(a b)2 = a2 – 2ab + b2]

= [(2) (x – 1)]2 = 4(x – 1)2

(vi) 121b2 – 88bc + 16c2 = (11b)2 – 2 (11b) (4c) + (4c)2

= (11b – 4c)2 [(a b)2 = a2 – 2ab + b2]

(vii) (l + m)2 – 4lm = l2 + 2lm + m2 – 4lm

= l2 – 2lm + m2

= (l m)2 [(a b)2 = a2 – 2ab + b2]

(viii) a4 + 2a2b2 + b4 = (a2)2 + 2 (a2) (b2) + (b2)2

= (a2 + b2)2 [(a + b)2 = a2 + 2ab + b2]

Q2: Factorise

(i) 4p2 – 9q2

(ii) 63a2 – 112b2

(iii) 49x2 – 36

(iv) 16x5 – 144x3

(v) (l + m)2 – (l m)2

(vi) 9x2y2 – 16
(vii) (x2 – 2xy + y2) – z2

(viii) 25a2 – 4b2 + 28bc – 49c2

Answer:

(i) 4p2 – 9q2

= (2p)2 – (3q)2

= (2p + 3q) (2p – 3q) [a2b2 = (a b) (a + b)]

(ii) 63a2 – 112b2

= 7(9a2 – 16b2)

= 7[(3a)2 – (4b)2]

= 7(3a + 4b) (3a – 4b) [a2b2 = (a b) (a + b)]

(iii) 49x2 – 36

= (7x)2 – (6)2

= (7x – 6) (7x + 6) [a2b2 = (a b) (a + b)]

(iv) 16x5 – 144x3

= 16x3(x2 – 9)

= 16 x3 [(x)2 – (3)2]

= 16 x3(x – 3) (x + 3) [a2b2 = (a b) (a + b)]

(v) (l + m)2 – (l m)2

= [(l + m) – (l m)] [(l + m) + (l m)] [Using identity a2b2 = (a b) (a + b)]

= (l + m l + m) (l + m + l m)

= 2m x 2l

= 4ml

= 4lm

(vi) 9x2y2 – 16

= (3xy)2 – (4)2

= (3xy – 4) (3xy + 4) [a2b2 = (a b) (a + b)]

(vii) (x2 – 2xy + y2) – z2

= (x y)2 – (z)2 [(a b)2 = a2 – 2ab + b2]

= (x y z) (x y + z) [a2b2 = (a b) (a + b)]

(viii) 25a2 – 4b2 + 28bc – 49c2

= 25a2 – (4b2 – 28bc + 49c2)

= (5a)2 – [(2b)2 – 2 x 2b x 7c + (7c)2]

= (5a)2 – [(2b – 7c)2]

[Using identity (a b)2 = a2 – 2ab + b2]

= [5a + (2b – 7c)] [5a – (2b – 7c)]

[Using identity a2b2 = (a b) (a + b)]

= (5a + 2b – 7c) (5a – 2b + 7c)

Q3: Factorise the expressions

  1. ax2 + bx
  1. 7p2 + 21q2
  1. 2x3 + 2xy2 + 2xz2
  1. am2 + bm2 + bn2 + an2
  1. (lm + l) + m + 1
  2. y(y + z) + 9(y + z)
  1. 5y2 – 20y – 8z + 2yz
  1. 10ab + 4a + 5b + 2
  1. 6xy – 4y + 6 – 9x

Answer:

(i) ax2 + bx = a x x x x + b x x = x(ax + b)

(ii) 7p2 + 21q2 = 7 x p x p + 3 x 7 x q x q = 7(p2 + 3q2)

(iii) 2x3 + 2xy2 + 2xz2 = 2x(x2 + y2 + z2)

(iv) am2 + bm2 + bn2 + an2 = am2 + bm2 + an2 + bn2

= m2(a + b) + n2(a + b)

= (a + b) (m2 + n2)

(v) (lm + l) + m + 1 = lm + m + l + 1

= m(l + 1) + 1(l + 1)

= (l + l) (m + 1)

(vi) y (y + z) + 9 (y + z) = (y + z) (y + 9)

(vii) 5y2 – 20y – 8z + 2yz = 5y2 – 20y + 2yz – 8z

= 5y(y – 4) + 2z(y – 4)

= (y – 4) (5y + 2z)

(viii) 10ab + 4a + 5b + 2 = 10ab + 5b + 4a + 2

= 5b(2a + 1) + 2(2a + 1)

= (2a + 1) (5b + 2)

(ix) 6xy – 4y + 6 – 9x = 6xy – 9x – 4y + 6

= 3x(2y – 3) – 2(2y – 3)

= (2y – 3) (3x – 2)

Q4: Factorise

  1. a4b4
  1. p4 – 81
  1. x4 – (y + z)4
  1. x4 – (x z)4
  2. a4 – 2a2b2 + b4

Answer:

(i) a4b4 = (a2)2 – (b2)2

= (a2b2) (a2 + b2)

= (a b) (a + b) (a2 + b2)

(ii) p4 – 81 = (p2)2 – (9)2

= (p2 – 9) (p2 + 9)

= [(p)2 – (3)2] (p2 + 9)

= (p – 3) (p + 3) (p2 + 9)

(iii) x4 – (y + z)4 = (x2)2 – [(y +z)2]2

= [x2 – (y + z)2] [x2 + (y + z)2]

= [x – (y + z)][ x + (y + z)] [x2 + (y + z)2]

= (x y z) (x + y + z) [x2 + (y + z)2]

(iv) x4 – (x z)4 = (x2)2 – [(x z)2]2

= [x2 – (x z)2] [x2 + (x z)2]

= [x – (x z)] [x + (x z)] [x2 + (x z)2]

= z(2x z) [x2 + x2 – 2xz + z2]

= z(2x z) (2x2 – 2xz + z2)

(v) a4 – 2a2b2 + b4 = (a2)2 – 2 (a2) (b2) + (b2)2

= (a2b2)2

= [(a b) (a + b)]2

= (a b)2 (a + b)2

Q5: Factorise the following expressions

(i) p2 + 6p + 8

(ii) q2 – 10q + 21

(iii) p2 + 6p – 16

Answer:

(i) p2 + 6p + 8

It can be observed that, 8 = 4 x 2 and 4 + 2 = 6

p2 + 6p + 8 = p2 + 2p + 4p + 8

= p(p + 2) + 4(p + 2)

= (p + 2) (p + 4)

(ii) q2 – 10q + 21

It can be observed that, 21 = (-7) x (-3) and (-7) + (-3) = – 10

q2 – 10q + 21 = q2 – 7q – 3q + 21

= q(q – 7) – 3(q – 7)

= (q – 7) (q – 3)

(iii) p2 + 6p – 16

It can be observed that, 16 = (-2) x 8 and 8 + (-2) = 6

p2 + 6p – 16 = p2 + 8p – 2p – 16

= p(p + 8) – 2(p + 8)

= (p + 8) (p – 2)

NCERT Solutions for Class 8 Maths Chapter 14 – Factorisation Exercise 14.3 Solution

Here you’ll find NCERT Chapter 14 – Factorisation Exercise 14.3 Solution

Exercise 14.3: Solutions of Questions on Page Number: 227

Q1: Carry out the following divisions.

  1. 28x4  ÷ 56x
  1. -36y3  ÷ 9y2
  1. 66pq2r3  ÷11qr2
  1. 34x3y3z3  ÷ 51xy2z3
  2. 12a8b8  ÷ (-6a6b4)

Answer:

(i) 28x4 = 2 × 2 × 7 × x × x × x × x

56x = 2 × 2 × 2 × 7 × x
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719754864.gif

(ii) 36y3 = 2 × 2 × 3 × 3 × y × y × y

9y2 = 3 × 3 × y × y
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+141527197885.gif

(iii) 66 pq2 r3 = 2 × 3 × 11 × p × q × q × r × r × r

11qr2 = 11 × q × r × r
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719795465.gif

(iv) 34 x3y3z3 = 2 × 17 × x × x × x × y × y × y × z × z × z

51 xy2z3 = 3 ×17 × x × y × y ×z × z × z
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719803799.gif

(v) 12a8b8 = 2 × 2 × 3 × a8 × b8

6a6b4 = 2 × 3 × a6 × b4

http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+141527198129.gif= – 2a2b4

Q2: Divide the given polynomial by the given monomial.

  1. (5x2 – 6x)  ÷ 3x
  2. (3y8 – 4y6 + 5y4)  ÷ y4
  1. 8(x3y2z2 + x2y3z2 + x2y2z3)  ÷ 4x2y2z2
  1. (x3 + 2x2 + 3x)  ÷ 2x
  2. (p3q6p6q3)  ÷ p3q3

Answer :

(i) 5x2 – 6x = x(5x – 6)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719892563.gif

(ii) 3y8 – 4y6 + 5y4 = y4(3y4 – 4y2 + 5)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719898483.gif

(iii) 8(x3y2z2 + x2y3z2 + x2y2z3) = 8x2y2z2(x + y + z)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719904868.gif

(iv) x3 + 2x2 + 3x = x(x2 + 2x + 3)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719911806.gif

(v) p3q6p6q3 = p3q3(q3p3)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152719918178.gif

Q3: Work out the following divisions.

(i) (10x – 25)  ÷ 5

(ii) (10x – 25) ÷ (2x – 5)

(iii) 10y(6y + 21) ÷ 5(2y + 7)

(iv) 9x2y2(3z – 24)  ÷ 27xy(z – 8)

(v) 96abc(3a – 12)(5b – 30)  ÷ 144(a – 4) (b – 6)

Answer :

(i)

(ii)

(iii)http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720003177.gif

http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720008984.gif

(iv) http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720018612.gif
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720024641.gif

(v) 96 abc(3a – 12) (5b – 30) ÷ 144 (a – 4) (b – 6)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720030442.gif

Q4: Divide as directed.

(i) 5(2x + 1) (3x + 5) ÷ (2x + 1)

(ii) 26xy(x + 5) (y – 4) ÷ 13x(y – 4)

(iii) 52pqr (p + q) (q + r) (r + p) ÷ 104pq(q + r) (r + p) (iv) 20(y + 4) (y2 + 5y + 3) ÷ 5(y + 4)

(v) x(x + 1) (x + 2) (x + 3) ÷ x(x + 1)

Answer:

(i) http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720052307.gif

= 5(3x + 1)

(ii) http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+1415272005986.gif
= 2y (x + 5)

(iii) 52pqr (p + q) (q + r) (r + p) ÷ 104pq (q + r) (r + p)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720086353.gif

(iv) 20(y + 4) (y2 + 5y + 3) = 2 × 2 × 5 × (y + 4) (y2 + 5y + 3)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720097728.gif

(v)http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720104416.gif

= (x + 2) (x + 3)

Q5: Factorise the expressions and divide them as directed.

(i) (y2 + 7y + 10) ÷ (y + 5)

(ii) (m2 – 14m – 32) ÷ (m + 2)

(iii) (5p2 – 25p + 20)÷ (p – 1)

(iv) 4yz(z2 + 6z – 16) ÷ 2y(z + 8)

(v) 5pq(p2q2) ÷ 2p(p + q)

(vi) 12xy(9x2 – 16y2) ÷ 4xy(3x + 4y) (vii) 39y3(50y2– 98) ÷ 26y2(5y+ 7)

Answer:

(i) (y2 + 7y + 10) = y2 + 2y + 5y + 10

= y (y + 2) + 5 (y + 2)

= (y + 2) (y + 5)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720131986.gif

(ii) m2 – 14m – 32 = m2 + 2m – 16m – 32

= m (m + 2) – 16 (m + 2)

= (m + 2) (m – 16)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720163968.gif

(iii) 5p2 – 25p + 20 = 5(p2 – 5p + 4)

= 5[p2p – 4p + 4]

= 5[p(p – 1) – 4(p – 1)]

= 5(p – 1) (p – 4)

http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+1415272017057.gif

(iv) 4yz(z2 + 6z – 16) = 4yz [z2 – 2z + 8z – 16]

= 4yz [z(z – 2) + 8(z – 2)]

= 4yz(z – 2) (z + 8)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720175798.gif

(v) 5pq(p2q2) = 5pq (p q) (p + q)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720181445.gif

(vi) 12xy(9x2 – 16y2) = 12xy[(3x)2 – (4y)2] = 12xy(3x – 4y) (3x + 4y)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720189916.gif

(vii) 39y3(50y2 – 98) = 3 × 13 × y × y × y × 2[(25y2 – 49)]

= 3 × 13 × 2 × y × y × y × [(5y)2 – (7)2]

= 3 × 13 × 2 × y × y × y (5y – 7) (5y + 7) 26y2(5y + 7) = 2 × 13 × y × y × (5y + 7)

39y3(50y2 – 98) ÷ 26y2 (5y + 7)
http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152720198939.png

NCERT Solutions for Class 8 Maths Chapter 14 – Factorisation Exercise 14.4 Solution

Here you’ll find NCERT Chapter 14 – Factorisation Exercise 14.4 Solution
Exercise 14.4: Solutions of Questions on Page Number: 228

Q1: Find and correct the errors in the statement:

4(x – 5) = 4x – 5

Answer:

L.H.S. = 4(x – 5) = 4 x x – 4 x 5 = 4x – 20 ≠ R.H.S.
The correct statement is 4(x – 5) = 4x – 20

Q2: Find and correct the errors in the statement: x(3x + 2) = 3x2 + 2

Answer:

L.H.S. = x(3x + 2) = x x 3x + x x 2 = 3x2 + 2x ≠ R.H.S.
The correct statement is x(3x + 2) = 3x2 + 2x

Q3: Find and correct the errors in the statement: 2x + 3y = 5xy

Answer:

L.H.S = 2x + 3y ≠ R.H.S.

The correct statement is 2x + 3y = 2x + 3y

Q4: Find and correct the errors in the statement: x + 2x + 3x = 5x
Answer :

L.H.S = x + 2x + 3x =1x + 2x + 3x = x(1 + 2 + 3) = 6x ≠ R.H.S.
The correct statement is x + 2x + 3x = 6x

Q5: Find and correct the errors in the statement: 5y + 2y + y – 7y = 0

Answer:

L.H.S. = 5y + 2y + y – 7y = 8y – 7y = y ≠ R.H.S.
The correct statement is 5y + 2y + y – 7y = y

Q6: Find and correct the errors in the statement: 3x + 2x = 5x2

Answer:

L.H.S. = 3x + 2x = 5x ≠ R.H.S

The correct statement is 3x + 2x = 5x

Q7: Find and correct the errors in the statement: (2x)2 + 4(2x) + 7 = 2x2 + 8x + 7

Answer:

L.H.S = (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7 ≠ R.H.S

The correct statement is (2x)2 + 4(2x) + 7 = 4x2 + 8x + 7

Q8: Find and correct the errors in the statement: (2x)2 + 5x = 4x + 5x = 9x

Answer:

L.H.S = (2x)2 + 5x = 4x2 + 5x ≠ R.H.S.
The correct statement is (2x)2 + 5x = 4x2 + 5x

Q9: Find and correct the errors in the statement: (3x + 2)2 = 3x2 + 6x + 4

Answer:

L.H.S. = (3x + 2)2 = (3x)2 + 2(3x)(2) + (2)2 [(a + b)2 = a2 + 2ab + b2]

= 9x2 + 12x + 4 ≠ R.H.S

The correct statement is (3x + 2)2 = 9x2 + 12x + 4

Q10: Find and correct the errors in the statement: (y – 3)2 = y2 – 9

Answer:

L.H.S = (y – 3)2 = (y)2 – 2(y)(3) + (3)2 [(a b)2 = a2 – 2ab + b2]

= y2 – 6y + 9 ≠ R.H.S

The correct statement is (y – 3)2 = y2 – 6y + 9

Q11: Find and correct the errors in the statement: (z + 5)2 = z2 + 25

Answer:

L.H.S = (z + 5)2 = (z)2 + 2(z)(5) + (5)2 [(a + b)2 = a2 + 2ab + b2]

= z2 + 10z + 25 ≠ R.H.S

The correct statement is (z + 5)2 = z2 + 10z + 25

Q12: Find and correct the errors in the statement: (2a + 3b) (a b) = 2a2 – 3b2

Answer:

L.H.S. = (2a + 3b) (a b) = 2a x a + 3b x a – 2a x b – 3b x b

= 2a2 + 3ab – 2ab – 3b2 = 2a2 + ab – 3b2 ≠ R.H.S.

The correct statement is (2a + 3b) (a b) = 2a2 + ab – 3b2

Q13: Find and correct the errors in the statement: (a + 4) (a + 2) = a2 + 8

Answer:

L.H.S. = (a + 4) (a + 2) = (a)2 + (4 + 2) (a) + 4 x 2

= a2 + 6a + 8 ≠ R.H.S

The correct statement is (a + 4) (a + 2) = a2 + 6a + 8

Q14: Find and correct the errors in the statement: (a – 4) (a – 2) = a2 – 8

Answer:

L.H.S. = (a – 4) (a – 2) = (a)2 + [(- 4) + (- 2)] (a) + (- 4) (- 2)

= a2 – 6a + 8 ≠ R.H.S.

The correct statement is (a – 4) (a – 2) = a2 – 6a + 8

Q15: Find and correct the errors in the statement: http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722782687.gif

Answer:

L.H.S = http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722804668.gif
The correct statement is http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722810387.gif

Q16: Find and correct the errors in the statement: http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722845297.gif
Answer: http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722852234.gif

The correct statement ishttp://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722870403.gif

Q17: Find and correct the errors in the statement:http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722917119.gif

Answer:

L.H.S =http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722935826.gif

The correct statement is http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722941044.gif

Q18: Find and correct the errors in the statement: http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722975548.gif
Answer:

L.H.S. =http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722980744.gif ≠ R.H.S.

The correct statement is http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152722999671.gif

Q19 : Find and correct the errors in the statement: http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152723036373.gif

Answer:

L.H.S. =
The correct statement is http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152723072517.gif

Q20: Find and correct the errors in the statement: http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152723096948.gif
Answer:

L.H.S. =

The correct statement is http://www.schoollamp.com/images/ncert-solutions/maths+factorisation+cbse+14152723115049.gif

NCERT Class 8 Maths All Chapters Solution 

Chapter 1: Rational Numbers

Chapter 2: Linear Equations in One Variable

Chapter 3: Understanding Quadrilaterals

Chapter 4: Practical Geometry

Chapter 5: Data Handling

Chapter 6: Squares and Square root

Chapter 7: Cubes and Cube Roots

Chapter 8: Comparing Quantities

Chapter 9: Arithmetic Expressions

Chapter 10: Visualising Solid Shapes

Chapter 11: Mensuration

Chapter 12: Exponents and Powers

Chapter 13: Direct and Inverse Proportions

Chapter 14: Factorisation

Chapter 15: Introduction to Graphs

Chapter 16: Playing With Numbers