NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable. Furthermore, here we’ve provided you with the latest solution for Class 8 Maths Chapter 2 – Linear Equations in One Variable. As a result here you’ll find solutions to all the exercises. This NCERT Class 8 solution will help you to score good marks in your exam.

Students can refer to our solution for NCERT Class 8 Maths Chapter 2 – Linear Equations in One Variable. The Chapter 2 Solution of NCERT will help students prepare for the exams and easily crack the exam. Below we’ve provided you with the exercise wise latest solution.

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise Wise Solution

Exercise 2.1 – Page 23 of NCERT
Exercise 2.2 – Page 28 of NCERT
Exercise 2.3 – Page 30 of NCERT
Exercise 2.4 – Page 31 of NCERT
Exercise 2.5 – Page 33 of NCERT
Exercise 2.6 – Page 35 of NCERT

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise 2.1 Solution

Here you’ll find NCERT Chapter 2 – Linear Equations in One Variable Exercise 2.1 Solution.
Exercise 2.1: Solutions of Questions on Page Number: 23

Q1: Solve: x – 2 = 7

Answer:

x – 2 = 7

Transposing 2 to R.H.S, we obtain

x = 7 + 2 = 9

Q2: Solve: y + 3 = 10

Answer:

y + 3 = 10

Transposing 3 to R.H.S, we obtain

y = 10 – 3 = 7

Q3: Solve: 6 = z + 2

Answer:

6 = z + 2

Transposing 2 to L.H.S, we obtain 6 – 2 = z

z = 4

Q4: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503691412.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250371642.gif

Transposing http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503721842.gif to R.H.S, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503728537.gif

Q5: Solve: 6x = 12

Answer:

6x = 12

Dividing both sides by 6, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503799362.gif

x = 2

Q6 : Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503858003.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250386339.gif

Multiplying both sides by 5, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503890494.gif

Q7: Solve:http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503931665.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503966385.gif
Multiplying both sides byhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503972339.gif, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152503977747.gif

Q8: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504019546.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504044713.gif

Multiplying both sides by 1.5, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504050215.gif

Q9: Solve: 7x – 9 = 16

Answer:

7x – 9 = 16
Transposing 9 to R.H.S, we obtain 7x = 16 + 9

7x = 25

Dividing both sides by 7, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504121704.gif

Q10: Solve: 14y – 8 = 13

Answer:

14y – 8 = 13

Transposing 8 to R.H.S, we obtain 14y = 13 + 8

14y = 21

Dividing both sides by 14, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504209025.gif

Q11: Solve: 17 + 6p = 9

Answer:

17 + 6p = 9

Transposing 17 to R.H.S, we obtain 6p = 9 – 17

6p = – 8

Dividing both sides by 6, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504275307.gif

Q12: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504317889.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504324065.gif

Transposing 1 to R.H.S, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152504329484.gif

Multiplying both sides by 3, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250433492.gif

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise 2.2 Solution

Here you’ll find NCERT Chapter 2 – Linear Equations in One Variable Exercise 2.2 Solution.
Exercise 2.2: Solutions of Questions on Page Number: 28

Q1: If you subtract 1/2 from a number and multiply the result by 1/2 , you get 1/8 . What is the number? Answer:

Let the number be x.

According to the question,
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152505376375.gif

On multiplying both sides by 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152505390094.gif

On transposing 1/2 to R.H.S, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152505411067.gif

Therefore, the number is 3/4.

Q2: The perimeter of a rectangular swimming pool is 154 m. Its length is 2 m more than twice its breadth. What are the length and the breadth of the pool?

Answer: Let the breadth be x m. The length will be (2x + 2) m.

Perimeter of swimming pool = 2(l + b) = 154 m

2(2x + 2 + x) = 154

2(3x + 2) = 154

Dividing both sides by 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506218842.gif

3x + 2 = 77

On transposing 2 to R.H.S, we obtain 3x = 77 – 2

3x = 75

On dividing both sides by 3, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506226203.gif

x = 25

2x + 2 = 2 × 25 + 2 = 52

Hence, the breadth and length of the pool are 25 m and 52 m respectively.

Q3: The base of an isosceles triangle is 4/3 cm. The perimeter of the triangle is http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506347364.gif cm. What is the length of either of the remaining equal sides?

Answer:

Let the length of equal sides be x cm.

Perimeter = x cm + x cm + Base = http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250635472.gifcm
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506361083.gif

On transposing 4/3 to R.H.S, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506372952.gif

On dividing both sides by 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506379119.gif

Therefore, the length of equal sides is http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250638516.gif cm

Q4: Sum of two numbers is 95. If one exceeds the other by 15, find the numbers.

Answer :

Let one number be x. Therefore, the other number will be x+ 15. According to the question,

x + x + 15 = 95

2x + 15 = 95

On transposing 15 to R.H.S, we obtain 2x = 95 – 15

2x = 80

On dividing both sides by 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506421184.gif

x = 40

x + 15 = 40 + 15 = 55

Hence, the numbers are 40 and 55.

Q5: Two numbers are in the ratio 5:3. If they differ by 18, what are the numbers?
Answer:

Let the common ratio between these numbers be x. Therefore, the numbers will be 5xand 3xrespectively.

Difference between these numbers = 18

5x – 3x= 18

2x= 18

Dividing both sides by 2,
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506531387.gif

x = 9

First number = 5x= 5 × 9 = 45

Second number = 3x= 3 × 9 = 27

Q6: Three consecutive integers add up to 51. What are these integers?

Answer:

Let three consecutive integers be x, x+ 1, and x+ 2. Sum of these numbers = x+ x+ 1 + x + 2 = 51

3x+ 3 = 51

On transposing 3 to R.H.S, we obtain

3x= 51 – 3

3x= 48

On dividing both sides by 3, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250664079.gif

x= 16

x+ 1 = 17

x+ 2 = 18

Hence, the consecutive integers are 16, 17, and 18.

Q7: The sum of three consecutive multiples of 8 is 888. Find the multiples.

Answer:

Let the three consecutive multiples of 8 be 8x, 8(x + 1), 8(x + 2).

Sum of these numbers =8x + 8(x+ 1) + 8(x+ 2) = 888

8(x+ x + 1 +x + 2) = 888

8(3x+ 3) = 888

On dividing both sides by 8, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506732716.gif

3x+ 3 = 111

On transposing 3 to R.H.S, we obtain

3x= 111 – 3

3x= 108

On dividing both sides by 3, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506741766.gif

x= 36

First multiple = 8x = 8 × 36 = 288

Second multiple = 8(x + 1) = 8 × (36 + 1) = 8 × 37 = 296

Third multiple = 8(x + 2) = 8 × (36 + 2) = 8 × 38 = 304

Hence, the required numbers are 288, 296, and 304.

Q8: Three consecutive integers are such that when they are taken in increasing order and multiplied by 2, 3 and 4 respectively, they add up to 74. Find these numbers.

Answer:

Let three consecutive integers be x, x + 1, x+ 2.

According to the question,

2x + 3(x+ 1) + 4(x+ 2) = 74

2x+ 3x + 3 + 4x + 8 = 74

9x+ 11 = 74

On transposing 11 to R.H.S, we obtain 9x= 74 – 11

9x= 63

On dividing both sides by 9, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506840936.gif

x= 7

x+ 1 = 7 + 1 = 8

x+ 2 = 7 + 2 = 9

Hence, the numbers are 7, 8, and 9.

Q9: The ages of Rahul and Haroon are in the ratio 5:7. Four years later the sum of their ages will be 56 years. What are their present ages?

Answer:

Let common ratio between Rahul’s age and Haroon’s age be x.

Therefore, age of Rahul and Haroon will be 5x years and 7x years respectively. After 4 years, the age of Rahul and Haroon will be (5x + 4) years and (7x + 4) years respectively.

According to the given question, after 4 years, the sum of the ages of Rahul and Haroon is 56 years.

∴ (5x + 4 + 7x + 4) = 56 12x + 8 = 56

On transposing 8 to R.H.S, we obtain 12x= 56 – 8

12x= 48

On dividing both sides by 12, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152506923559.gif

x= 4

Rahul’s age = 5xyears = (5 × 4) years = 20 years Haroon’s age = 7xyears = (7 × 4) years = 28 years

Q10: The number of boys and girls in a class are in the ratio 7:5. The number of boys is 8 more than the number of girls. What is the total class strength?

Answer:

Let the common ratio between the number of boys and numbers of girls be x.

Number of boys = 7x

Number of girls = 5x

According to the given question, Number of boys = Number of girls + 8

∴ 7x = 5x + 8

On transposing 5x to L.H.S, we obtain 7x – 5x = 8

2x = 8

On dividing both sides by 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507002734.gif

x = 4

Number of boys = 7x = 7 × 4 = 28 Number of girls = 5x = 5 × 4 = 20

Hence, total class strength = 28 + 20 = 48 students

Q11: Baichung’s father is 26 years younger than Baichung’s grandfather and 29 years older than Baichung. The sum of the ages of all the three is 135 years. What is the age of each one of them?

Answer:

Let Baichung’s father’s age be x years. Therefore, Baichung’s age and Baichung’s grandfather’s age will be (x – 29) years and (x + 26) years respectively.

According to the given question, the sum of the ages of these 3 people is 135 years.

x + x – 29 + x + 26 = 135 3x – 3 = 135

On transposing 3 to R.H.S, we obtain 3x = 135 + 3

3x = 138

On dividing both sides by 3, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507095345.gif

x = 46

Baichung’s father’s age = x years = 46 years

Baichung’s age = (x – 29) years = (46 – 29) years = 17 years

Baichung’s grandfather’s age = (x + 26) years = (46 + 26) years = 72 years

Q12: Baichung’s father is 26 years younger than Baichung’s grandfather and 29 years older than Baichung. The sum of the ages of all the three is 135 years. What is the age of each one of them?

Answer: Let Baichung’s father’s age be x years. Therefore, Baichung’s age and Baichung’s grandfather’s age will be (x – 29) years and (x + 26) years respectively.

According to the given question, the sum of the ages of these 3 people is 135 years.

x + x – 29 + x + 26 = 135 3x – 3 = 135

On transposing 3 to R.H.S, we obtain 3x = 135 + 3

3x = 138

On dividing both sides by 3, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507185455.gif

x = 46

Baichung’s father’s age = x years = 46 years

Baichung’s age = (x – 29) years = (46 – 29) years = 17 years

Baichung’s grandfather’s age = (x + 26) years = (46 + 26) years = 72 years

Q13: A rational number is such that when you multiply it by http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507631196.gif and add http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250768132.gifto the product, you get http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507689305.gif  . What is the number?

Answer:

Let the number be x.

According to the given question,

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507695808.gif

On transposing to R.H.S, we obtainhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250770406.gif
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507709789.gif

On multiplying both sides by , we obtainhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415250771529.gif
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507721781.gif

Hence, the rational number is .http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152507727756.gif

Q14: Lakshmi is a cashier in a bank. She has currency notes of denominations Rs 100, Rs 50 and Rs 10, respectively. The ratio of the number of these notes is 2:3:5. The total cash with Lakshmi is Rs 4, 00,000. How many notes of each denomination does she have?

Answer:

Let the common ratio between the numbers of notes of different denominations be x.

Therefore, numbers of Rs 100 notes, Rs 50 notes, and Rs 10 notes will be2x, 3x, and 5x respectively.

Amount of Rs 100 notes = Rs (100 x 2x) = Rs 200x

Amount of Rs 50 notes = Rs (50 x 3x)= Rs 150x

Amount of Rs 10 notes = Rs (10 x 5x) = Rs 50x

It is given that total amount is Rs 400000.

∴ 200x + 150x + 50x = 400000

⇒ 400x = 400000

On dividing both sides by 400, we obtain

x = 1000

Number of Rs 100 notes = 2x = 2 x 1000 = 2000

Number of Rs 50 notes = 3x = 3 x 1000 = 3000

Number of Rs 10 notes = 5x = 5 x 1000 = 5000

Q15: I have a total of Rs 300 in coins of denomination Re 1, Rs 2 and Rs 5. The number of Rs 2 coins is 3 times the number of Rs 5 coins. The total number of coins is 160. How many coins of each denomination are with me?

Answer:

Let the number of Rs 5 coins be x.

Number of Rs 2 coins = 3 × Number of Rs 5 coins = 3x

Number of Re 1 coins = 160 – (Number of coins of Rs 5 and of Rs 2)

= 160 – (3x + x) = 160 – 4x

Amount of Re 1 coins = Rs [1 × (160 – 4x)] = Rs (160 – 4x) Amount of Rs 2 coins = Rs (2 × 3x)= Rs 6x

Amount of Rs 5 coins = Rs (5 × x) = Rs 5x It is given that the total amount is Rs 300.

∴ 160 – 4x + 6x + 5x = 300

160 + 7x = 300

On transposing 160 to R.H.S, we obtain 7x = 300 – 160

7x = 140

On dividing both sides by 7, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152508238506.gif

x = 20

Number of Re 1 coins = 160 – 4x = 160 – 4 × 20 = 160 – 80 = 80

Number of Rs 2 coins = 3x = 3 × 20 = 60 Number of Rs 5 coins = x = 20

Q16: The organizers of an essay competition decide that a winner in the competition gets a prize of Rs 100 and a participant who does not win gets a prize of Rs 25. The total prize money distributed is Rs 3000. Find the number of winners, if the total number of participants is 63.

Answer:

Let the number of winners be x. Therefore, the number of participants who did not win will be 63 – x.

Amount given to the winners = Rs (100 × x) = Rs 100x

Amount given to the participants who did not win = Rs [25(63 – x)]

= Rs (1575 – 25x)

According to the given question, 100x + 1575 – 25x = 3000

On transposing 1575 to R.H.S, we obtain 75x = 3000 – 1575

75x = 1425

On dividing both sides by 75, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152508333225.gif

x = 19

Hence, number of winners = 19

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise 2.3 Solution

Here you’ll find NCERT Chapter 2 – Linear Equations in One Variable Exercise 2.3 Solution.
Exercise 2.3: Solutions of Questions on Page Number: 30

Q1: Solve and check result: 3x = 2x + 18

Answer:

3x = 2x + 18

On transposing 2x to L.H.S, we obtain 3x – 2x = 18

x = 18

L.H.S = 3x = 3 x 18 = 54

R.H.S = 2x + 18 = 2 x 18 + 18 = 36 + 18 = 54

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q2: Solve and check result: 5t – 3 = 3t – 5

Answer:

5t – 3 = 3t – 5

On transposing 3t to L.H.S and -3 to R.H.S, we obtain

5t – 3t = -5 – (-3)

2t = -2

On dividing both sides by 2, we obtain

t = -1

L.H.S = 5t – 3 = 5 x (-1) – 3 = -8

R.H.S = 3t – 5 = 3 x (-1) – 5 = – 3 – 5 = -8

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q3: Solve and check result: 5x + 9 = 5 + 3x

Answer:

5x + 9 = 5 + 3

On transposing 3x to L.H.S and 9 to R.H.S, we obtain 5x – 3x = 5 – 9

2x = -4

On dividing both sides by 2, we obtain

x = -2

L.H.S = 5x + 9 = 5 x (-2) + 9 = -10 + 9 = -1

R.H.S = 5 + 3x = 5 + 3 x (-2) = 5 – 6 = -1

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q4: Solve and check result: 4z + 3 = 6 + 2z

Answer:

4z + 3 = 6 + 2z

On transposing 2z to L.H.S and 3 to R.H.S, we obtain 4z – 2z = 6 – 3

2z = 3

Dividing both sides by 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152508761859.gif

L.H.S = 4z + 3 = 4 × + 3 = 6 + 3 = 9http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152508793348.gifhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152508803744.gif

R.H.S = 6 + 2z = 6 + 2 × = 6 + 3 = 9

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q5: Solve and check result: 2x – 1 = 14 – x

Answer:

2x – 1 = 14 – x

Transposing x to L.H.S and 1 to R.H.S, we obtain 2x + x = 14 + 1

3x = 15

Dividing both sides by 3, we obtain

x = 5

L.H.S = 2x – 1 = 2 x (5) – 1 = 10 – 1 = 9

R.H.S = 14 – x = 14 – 5 = 9

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q6: Solve and check result: 8x + 4 = 3(x – 1) + 7

Answer:

8x + 4 = 3(x – 1) + 7

8x + 4 = 3x – 3 + 7

Transposing 3x to L.H.S and 4 to R.H.S, we obtain 8x – 3x = – 3 + 7 – 4

5x = – 7 + 7
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509046356.gif

L.H.S = 8x + 4 = 8 × (0) + 4 = 4

R.H.S = 3(x – 1) + 7 = 3 (0 – 1) + 7 = – 3 + 7 = 4

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q7: Solve and check result:http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509134523.gif

Answer :
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509140315.gif

Multiplying both sides by 5, we obtain 5x = 4(x + 10)

5x = 4x + 40

Transposing 4x to L.H.S, we obtain 5x – 4x = 40

x = 40

L.H.S = x = 40

R.H.S = =http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509145916.gifhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509151379.gif

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q8: Solve and check result:http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509246534.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509254708.gif

Transposing http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509259968.gifto L.H.S and 1 to R.H.S, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509265804.gif

Multiplying both sides by 5, we obtain

x = 10

L.H.S = =http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509272149.gifhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509278284.gif

R.H.S =http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509283933.gif

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q9: Solve and check result:http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509417367.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+141525094549.gif

Transposing y to L.H.S and http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509460856.gif to R.H.S, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509466677.gif

Dividing both sides by 3, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509472778.gif

L.H.S =

R.H.S =http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509489133.gif

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

Q10: Solve and check result:

Answer:

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509542116.gif

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509550293.gif

Transposing 5m to L.H.S, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509556352.gif

Dividing both sides by – 2, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509562066.gif

L.H.S =

R.H.S =http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152509579494.gif

L.H.S. = R.H.S.

Hence, the result obtained above is correct.

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise 2.4 Solution

Here you’ll find NCERT Chapter 2 – Linear Equations in One Variable Exercise 2.4 Solution.
Exercise 2.4: Solutions of Questions on Page Number: 31

Q1: Amina thinks of a number and subtracts 5/2 from it. She multiplies the result by 8. The result now obtained is 3 times the same number she thought of. What is the number?

Answer:

Let the number be x.

According to the given question,

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152510464406.gif= 3x

8x – 20 = 3x

Transposing 3x to L.H.S and – 20 to R.H.S, we obtain 8x – 3x = 20

5x = 20

Dividing both sides by 5, we obtain

x = 4

Hence, the number is 4.

Q2: A positive number is 5 times another number. If 21 is added to both the numbers, then one of the new numbers becomes twice the other new number. What are the numbers?

Answer:

Let the numbers be x and 5x. According to the question,

21 + 5x = 2(x + 21)

21 + 5x = 2x + 42

Transposing 2x to L.H.S and 21 to R.H.S, we obtain

5x – 2x = 42 – 21

3x = 21

Dividing both sides by 3, we obtain

x = 7

5x = 5 x 7 = 35

Hence, the numbers are 7 and 35 respectively.

Q3: Sum of the digits of a two digit number is 9. When we interchange the digits it is found that the resulting new number is greater than the original number by 27. What is the two-digit number?

Answer:

Let the digits at tens place and ones place be x and 9 – x respectively.

Therefore, original number = 10x + (9 – x) = 9x + 9

On interchanging the digits, the digits at ones place and tens place will be x and 9 – x

respectively.

Therefore, new number after interchanging the digits = 10(9 – x) + x

= 90 – 10x + x

= 90 – 9x

According to the given question, New number = Original number + 27 90 – 9x = 9x + 9 + 27

90 – 9x = 9x + 36

Transposing 9x to R.H.S and 36 to L.H.S, we obtain 90 – 36 = 18x

54 = 18x

Dividing both sides by 18, we obtain 3 = x and 9 – x = 6

Hence, the digits at tens place and ones place of the number are 3 and 6 respectively.

Therefore, the two-digit number is 9x + 9 = 9 x 3 + 9 = 36

Q4: One of the two digits of a two digit number is three times the other digit. If you interchange the digit of this two-digit number and add the resulting number to the original number, you get 88. What is the original number?

Answer:

Let the digits at tens place and ones place be x and 3x respectively. Therefore, original number = 10x + 3x = 13x

On interchanging the digits, the digits at ones place and tens place will be x and 3x respectively.

Number after interchanging = 10 x 3x + x = 30x + x = 31x

According to the given question, Original number + New number = 88 13x + 31x = 88

44x = 88

Dividing both sides by 44, we obtain

x = 2

Therefore, original number = 13x = 13 x 2 = 26

By considering the tens place and ones place as 3x and x respectively, the two-digit number obtained is 62.

Therefore, the two-digit number may be 26 or 62.

Q5: Shobo’s mother’s present age is six times Shobo’s present age. Shobo’s age five years from now will be one third of this mother’s present age. What are their present ages?

Answer:

Let Shobo’s age be x years. Therefore, his mother’s age will be 6x years.

According to the given question,

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152510775125.gifhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+141525108043.gif

x + 5 = 2x

Transposing x to R.H.S, we obtain 5 = 2x x

5 = x

6x = 6 × 5 = 30

Therefore, the present ages of Shobo and Shobo’s mother will be 5 years and 30 years respectively.

Q6: There is a narrow rectangular plot, reserved for a school, in Mahuli village. The length and breadth of the plot are in the ratio 11:4. At the rate Rs 100 per metre it will cost the village panchayat Rs 75, 000 to fence the plot. What are the dimensions of the plot?

Answer:

Let the common ratio between the length and breadth of the rectangular plot be x. Hence, the length and breadth of the rectangular plot will be 11x m and 4x m respectively.

Perimeter of the plot = 2(Length + Breadth)http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152510900581.gif

It is given that the cost of fencing the plot at the rate of Rs 100 per metre is Rs 75, 000.

∴ 100 × Perimeter = 75000

100 × 30x = 75000

3000x = 75000

Dividing both sides by 3000, we obtain

x = 25

Length = 11x m = (11 × 25) m = 275 m Breadth = 4x m = (4 × 25) m = 100 m

Hence, the dimensions of the plot are 275 m and 100 m respectively.

Q7: Hasan buys two kinds of cloth materials for school uniforms, shirt material that costs him Rs 50 per metre and trouser material that costs him Rs 90 per metre. For every 2 meters of the trouser material he buys 3 metres of the shirt material. He sells the materials at 12% and 10% profit respectively. His total sale is Rs 36660. How much trouser material did he buy?

Answer:

Let 2x m of trouser material and 3x m of shirt material be bought by him.http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152510959437.gif

Per metre selling price of trouser material = = Rs 100.80http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152510987399.gif

Per metre selling price of shirt material = = Rs 55 Given that, total amount of selling = Rs 36660

100.80 × (2x) + 55 × (3x) = 36660

201.60x + 165x = 36660

366.60x= 36660

Dividing both sides by 366.60, we obtain

x = 100

Trouser material = 2x m = (2 × 100) m = 200 m

Q8: Half of a herd of deer are grazing in the field and three fourths of the remaining are playing nearby. The rest 9 are drinking water from the pond. Find the number of deer in the herd.

Answer:

Let the number of deer be x.

Number of deer grazing in the field =http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415251102779.gif
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511055123.gif

Number of deer drinking water from the pond = 9
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511060674.gifhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511066279.gif

Multiplying both sides by 8, we obtain

x = 72

Hence, the total number of deer in the herd is 72.

Q9: A grandfather is ten times older than his granddaughter. He is also 54 years older than her. Find their present ages

Answer:

Let the granddaughter’s age be x years.

Therefore, grandfather’s age will be 10x years.

According to the question,

Grandfather’s age = Granddaughter’s age + 54 years 10x = x + 54

Transposing x to L.H.S, we obtain 10x x = 54

9x = 54

x = 6

Granddaughter’s age = x years = 6 years

Grandfather’s age = 10x years = (10 x 6) years = 60 years

Q10: Aman’s age is three times his son’s age. Ten years ago he was five times his son’s age. Find their present ages.

Answer:

Let Aman’s son’s age be x years. Therefore, Aman’s age will be 3x years. Ten years ago, their age was (x – 10) years and (3x – 10) years respectively.

According to the question,

10 years ago, Aman’s age = 5x

Aman’s son’s age 10 years ago 3x – 10 = 5(x – 10)

3x – 10 = 5x – 50

Transposing 3x to R.H.S and 50 to L.H.S, we obtain 50 – 10 = 5x – 3x

40 = 2x

Dividing both sides by 2, we obtain 20 = x

Aman’s son’s age = x years = 20 years

Aman’s age = 3x years = (3 x 20) years = 60 years

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise 2.5 Solution

Here you’ll find NCERT Chapter 2 – Linear Equations in One Variable Exercise 2.5 Solution.
Exercise 2.5: Solutions of Questions on Page Number: 33

Q1: Solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511286505.gif
Answer:

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511316935.gif

L.C.M. of the denominators, 2, 3, 4, and 5, is 60.

Multiplying both sides by 60, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415251132306.gif

⇒ 30x – 12 = 20x + 15 (Opening the brackets)

⇒ 30x – 20x = 15 + 12

⇒ 10x = 27

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511328222.gif

Q2: Solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511374125.gif
Answer:

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511397291.gif

L.C.M. of the denominators, 2, 4, and 6, is 12.

Multiplying both sides by 12, we obtain

6n – 9n + 10n = 252

⇒ 7n = 252
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511402732.gif

Q3: Solve the linear equationhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511451809.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511460016.gif

L.C.M. of the denominators, 2, 3, and 6, is 6.

Multiplying both sides by 6, we obtain

6x + 42 – 16x = 17 – 15x

⇒ 6x – 16x + 15x = 17 – 42

⇒ 5x = – 25
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152511469128.gif

Q4: Solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152512140704.gif
Answer:

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152512152719.gif

L.C.M. of the denominators, 3 and 5, is 15.

Multiplying both sides by 15, we obtain 5(x – 5) = 3(x – 3)

⇒ 5x – 25 = 3x – 9 (Opening the brackets)

⇒ 5x – 3x = 25 – 9

⇒ 2x = 16

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152512165811.gif

Q5: Solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513537962.gif
Answer:

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513561699.gif

L.C.M. of the denominators, 3 and 4, is 12.

Multiplying both sides by 12, we obtain 3(3t – 2) – 4(2t + 3) = 8 – 12t

⇒ 9t – 6 – 8t – 12 = 8 – 12t (Opening the brackets)

⇒ 9t – 8t + 12t = 8 + 6 + 12

⇒ 13t = 26
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513567563.gif

Q6: Solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513636021.gif
Answer:

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513657663.gif

L.C.M. of the denominators, 2 and 3, is 6.

Multiplying both sides by 6, we obtain 6m – 3(m – 1) = 6 – 2(m – 2)

⇒ 6m – 3m + 3 = 6 – 2m + 4 (Opening the brackets)

⇒ 6m – 3m + 2m = 6 + 4 – 3

⇒ 5m = 7

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513663853.gif

Q7: Simplify and solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513696748.gif

Answer:

3(t – 3) = 5(2t + 1)

⇒ 3t – 9 = 10t + 5 (Opening the brackets)

⇒ – 9 – 5 = 10t – 3t

⇒ – 14 = 7t
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513720573.gif

Q8: Simplify and solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415251377152.gif

Answer:

15(y – 4) – 2(y – 9) + 5(y + 6) = 0

⇒ 15y – 60 – 2y + 18 + 5y + 30 = 0 (Opening the brackets)

⇒ 18y – 12 = 0

⇒ 18y = 12

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415251379526.gif

Q9: Simplify and solve the linear equation http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513894485.gif

Answer: 3(5z – 7) – 2(9z – 11) = 4(8z – 13) – 17

⇒ 15z – 21 – 18z + 22 = 32z – 52 – 17 (Opening the brackets)

⇒ – 3z + 1 = 32z – 69

⇒ – 3z – 32z = – 69 – 1

⇒ – 35z = – 70

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513901179.gif

Q10: Simplify and solve the linear equationhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152513977744.gif

Answer:

0.25(4f – 3) = 0.05(10f – 9)
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514001349.gif

Multiplying both sides by 20, we obtain 5(4f – 3) = 10f – 9

⇒ 20f – 15 = 10f – 9 (Opening the brackets)

⇒ 20f – 10f = – 9 + 15

⇒ 10f = 6

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514007129.gif

NCERT Solutions for Class 8 Maths Chapter 2 – Linear Equations in One Variable Exercise 2.6 Solution

Here you’ll find NCERT Chapter 2 – Linear Equations in One Variable Exercise 2.6 Solution.
Exercise 2.6: Solutions of Questions on Page Number: 35

Q1: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514042734.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514048917.gif

On multiplying both sides by 3x, we obtain 8x – 3 = 6x

⇒ 8x – 6x = 3

⇒ 2x = 3

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514054637.gif

Q2: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514153184.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+1415251415853.gif

On multiplying both sides by 7 – 6x, we obtain

9x = 15(7 – 6x)

⇒ 9x = 105 – 90x

⇒ 9x + 90x = 105

⇒ 99x = 105

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514164171.gif

Q3: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514231523.gif

Answer: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514237154.gif

On multiplying both sides by 9(z + 15), we obtain

9z = 4(z + 15)

⇒ 9z = 4z + 60

⇒ 9z – 4z = 60

⇒ 5z = 60

z = 12

Q4: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514348214.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514353202.gif

On multiplying both sides by 5(2 – 6y), we obtain 5(3y + 4) = – 2(2 – 6y)

⇒ 15y + 20 = – 4 + 12y

⇒ 15y – 12y = – 4 – 20

⇒ 3y = – 24

y = – 8

Q5: Solve: http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514414489.gif

Answer:
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514444225.gif

On multiplying both sides by 3(y + 2), we obtain 3(7y + 4) = – 4(y + 2)

⇒ 21y + 12 = – 4y – 8

⇒ 21y + 4y = – 8 – 12

⇒ 25y = – 20

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+141525144499.gif

Q6: The ages of Hari and Harry are in the ratio 5:7. Four years from now the ratio of their ages will be 3:4. Find their present ages.

Answer:

Let the common ratio between their ages be x. Therefore, Hari’s age and Harry’s age will be 5x years and 7x years respectively and four years later, their ages will be (5x + 4) years and (7x + 4) years respectively.

According to the situation given in the question,
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514494007.gif

http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514522271.gif

Hari’s age = 5x years = (5 × 4) years = 20 years Harry’s age = 7x years = (7 × 4) years = 28 years

Therefore, Hari’s age and Harry’s age are 20 years and 28 years respectively.

Q7: The denominator of a rational number is greater than its numerator by 8. If the numerator is increased by 17 and the denominator is decreased by 1, the number obtained ishttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514583089.gif. Find the rational number.

Answer:

Let the numerator of the rational number be x. Therefore, its denominator will be x + 8.

The rational number will behttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514589061.gif. According to the question,
http://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514595612.gif

⇒ 2(x + 17) = 3(x + 7)

⇒ 2x + 34 = 3x + 21

⇒ 34 – 21 = 3x – 2x

⇒13 = x

Numerator of the rational number = x = 13

Denominator of the rational number = x + 8 = 13 + 8 = 21

Rational numberhttp://www.schoollamp.com/images/ncert-solutions/maths+linear+equations+in+one+variable+cbse+14152514601308.gif

NCERT Class 8 Maths All Chapters Solution 

Chapter 1: Rational Numbers

Chapter 2: Linear Equations in One Variable

Chapter 3: Understanding Quadrilaterals

Chapter 4: Practical Geometry

Chapter 5: Data Handling

Chapter 6: Squares and Square root

Chapter 7: Cubes and Cube Roots

Chapter 8: Comparing Quantities

Chapter 9: Arithmetic Expressions

Chapter 10: Visualising Solid Shapes

Chapter 11: Mensuration

Chapter 12: Exponents and Powers

Chapter 13: Direct and Inverse Proportions

Chapter 14: Factorisation

Chapter 15: Introduction to Graphs

Chapter 16: Playing With Numbers