NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions. Furthermore, here we’ve provided you with the latest solution for Class 8 Maths Chapter 9 – Arithmetic Expressions. As a result here you’ll find solutions to all the exercises. This NCERT Class 8 solution will help you to score good marks in your exam.

Students can refer to our solution for NCERT Class 8 Maths Chapter 9 – Arithmetic Expressions. The Chapter 9 Solution of NCERT will help students prepare for the exams and easily crack the exam. Below we’ve provided you with the exercise-wise latest solution.

NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions Exercise Wise Solution

Exercise 9.1 – Page 140 of NCERT
Exercise 9.2 – Page 143 of NCERT
Exercise 9.3 – Page 146 of NCERT
Exercise 9.4 – Page 148 of NCERT
Exercise 9.5 – Page 151 of NCERT

NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions Exercise 9.1 Solution

Here you’ll find NCERT Chapter 9 – Arithmetic Expressions Exercise 9.1 Solution.
Exercise 9.1: Solutions of Questions on Page Number: 140

Q1: Identify the terms, their coefficients for each of the following expressions.

  1. 5xyz2 – 3zy
  1. 1 + x + x2
  1. 4x2y2 – 4x2y2z2 + z2
  1. 3 – pq + qr rp
  1. http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577114855.gif
  2. 0.3a – 0.6ab + 0.5b

Answer:

The terms and the respective coefficients of the given expressions are as follows.

TermsCoefficients
(i)5xyz2
– 3zy
5
– 3
(ii)1x x21
1
1
(iii)4x2y2
– 4x2y2z2
z2
4
– 4
1
(iv)3
pq
qr
rp
3
-1
1
-1
(v) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577141661.gif
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577179867.gif
xy
1/2

1/2

-1
(vi) 0.3a
– 0.6ab
0.5b
0.3
– 0.6
0.5

Q2: Classify the following polynomials as monomials, binomials, trinomials. Which polynomials do not fit in any of these three categories?

x + y, 1000, x + x2 + x3 + x4, 7 + y + 5x, 2y – 3y2, 2y – 3y2 + 4y3, 5x – 4y + 3xy, 4z – 15z2, ab + bc + cd +

da, pqr, p2q + pq2, 2p + 2q

Answer:

The given expressions are classified as Monomials: 1000, pqr

Binomials: x + y, 2y – 3y2, 4z – 15z2, p2q + pq2, 2p + 2q Trinomials: 7 + y + 5x, 2y – 3y2 + 4y3, 5x – 4y + 3xy Polynomials that do not fit in any of these categories are x+ x2+ x3+ x4, ab + bc + cd + da

Q3: Add the following.

  1. ab bc, bc ca, ca ab
  1. a b + ab, b c + bc, c a + ac
  2. 2p2q2 – 3pq + 4, 5 + 7pq – 3p2q2
  3. l2 + m2, m2 + n2, n2 + l2, 2lm + 2mn + 2nl

Answer:

The given expressions written in separate rows, with like terms one below the other and then the addition of these expressions are as follows.

(i)
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577452749.gif

Thus, the sum of the given expressions is 0.

(ii)

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577478658.gif

Thus, the sum of the given expressions is ab + bc + ac.

(iii)

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577486688.gif

Thus, the sum of the given expressions is – p2q2 + 4pq + 9.

(iv)

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577499771.gif

Thus, the sum of the given expressions is 2(l2 + m2 + n2 + lm + mn + nl).

Q4:

  1. Subtract 4a – 7ab + 3b + 12 from 12a – 9ab + 5b – 3
  1. Subtract 3xy + 5yz – 7zx from 5xy – 2yz – 2zx + 10xyz
  1. Subtract 4p2q – 3pq + 5pq2 – 8p + 7q – 10 from 18 – 3p – 11q + 5pq – 2pq2 + 5p2q

Answer:

The given expressions in separate rows, with like terms one below the other and then the subtraction of these expressions is as follows.

(a)
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577555772.gif

(b)

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+1415257756291.gif

(c)
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577574628.gif

NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions Exercise 9.2 Solution

Here you’ll find NCERT Chapter 9 – Arithmetic Expressions Exercise 9.2 Solution.
Exercise 9.2: Solutions of Questions on Page Number: 143

Q1: Find the product of the following pairs of monomials.
(i) 4, 7p (ii) – 4p, 7p (iii) – 4p, 7pq

(iv) 4p3, – 3p (v) 4p, 0

Answer:

The product will be as follows.

(i) 4 x 7p = 4 x 7 x p = 28p

(ii) – 4p x 7p = – 4 x p x 7 x p = (- 4 x 7) x (p x p) = – 28 p2

  1. – 4p x 7pq = – 4 x p x 7 x p x q = (- 4 x 7) x (p x p x q) = – 28p2q
  1. 4p3 x – 3p = 4 x (- 3) x p x p x p x p = – 12 p4
  1. 4p x 0 = 4 x p x 0 = 0

Q2: Find the areas of rectangles with the following pairs of monomials as their lengths and breadths respectively.

(p, q); (10m, 5n); (20x2, 5y2); (4x, 3x2); (3mn, 4np)

Answer:

We know that,

Area of rectangle = Length x Breadth Area of 1st rectangle = p x q = pq

Area of 2nd rectangle = 10m x 5n = 10 x 5 x m x n = 50 mn Area of 3rd rectangle = 20x2 x 5y2 = 20 x 5 x x2 x y2 = 100 x2y2 Area of 4th rectangle = 4x x 3x2 = 4 x 3 x x x x2 = 12x3

Area of 5th rectangle = 3mn x 4np = 3 x 4 x m x n x n x p = 12mn2p

Q3: Complete the table of products.


http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577846352.gif
2x– 5y3x2– 4xy7x2y– 9x2y2
2x4x2
– 5y– 15x2y
3x2
– 4

Answer:

The table can be completed as follows.


http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152577857845.gif
2x– 5y3x2– 4xy7x2y– 9x2y2
2x4x2– 10xy6x3– 8x2y14x3y– 18x3y2
– 5y– 10xy25 y2– 15x2y20xy2– 35x2y245x2y3
3x26x3– 15x2y9x4– 12x3y21x4y– 27x4y2
– 4xy– 8x2y20xy2– 12x3y16x2y2– 28x3y236x3y3
7x2y14x3y– 35x2y221x4y– 28x3y249x4y2– 63x4y3
– 9x2y2– 18x3y245 x2y3– 27x4y236x3y3– 63x4y381x4y4

Q4: Obtain the volume of rectangular boxes with the following length, breadth and height respectively.
(i) 5a, 3a2, 7a4 (ii) 2p, 4q, 8r
(iii) xy, 2x2y, 2xy2
(iv) a, 2b, 3c

Answer:

We know that,

Volume = Length x Breadth x Height

  1. Volume = 5a x 3a2 x 7a4 = 5 x 3 x 7 x a x a2 x a4 = 105 a7
  1. Volume = 2p x 4q x 8r = 2 x 4 x 8 x p x q x r = 64pqr
  1. Volume = xy x 2x2y x 2xy2 = 2 x 2 x xy x x2y x xy2 = 4x4y4
  1. Volume = a x 2b x 3c = 2 x 3 x a x b x c = 6abc

Q5:

Obtain the product of

(i) xy, yz, zx (ii) a, – a2, a3 (iii) 2, 4y, 8y2, 16y3

(iv) a, 2b, 3c, 6abc (v) m, – mn, mnp

Answer:

  1. xy x yz x zx = x2y2z2
  1. a x (- a2) x a3 = – a6
  1. 2 x 4y x 8y2 x 16y3 = 2 x 4 x 8 x 16 x y x y2 x y3 = 1024 y6
  1. a x 2b x 3c x 6abc = 2 x 3 x 6 x a x b x c x abc = 36a2b2c2
  1. m x (- mn) x mnp = – m3n2p

NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions Exercise 9.3 Solution

Here you’ll find NCERT Chapter 9 – Arithmetic Expressions Exercise 9.3 Solution.
Exercise 9.3: Solutions of Questions on Page Number: 146

Q1: Carry out the multiplication of the expressions in each of the following pairs.

(i) 4p, q + r (ii) ab, a b (iii) a + b, 7a2b2

(iv) a2 – 9, 4a (v) pq + qr + rp, 0

Answer:

(i) (4p) x (q + r) = (4p x q) + (4p x r) = 4pq + 4pr

(ii) (ab) x (a b) = (ab x a) + [ab x (- b)] = a2b ab2

(iii) (a + b) x (7a2 b2) = (a x 7a2b2) + (b x 7a2b2) = 7a3b2 + 7a2b3 (iv) (a2 – 9) x (4a) = (a2 x 4a) + (- 9) x (4a) = 4a3 – 36a

(v) (pq + qr + rp) x 0 = (pq x 0) + (qr x 0) + (rp x 0) = 0

Q2: Complete the table

First expressionSecond ExpressionProduct
(i)ab + c + d
(ii)x + y – 55 xy
(iii)p6p2 – 7p + 5
(iv)4p2q2p2q2
(v)a + b + cabc

Answer:

The table can be completed as follows.

First expressionSecond ExpressionProduct
(i)ab + c + dab + ac + ad
(ii)x + y – 55 xy5x2y + 5xy2 – 25xy
(iii)p6p2 – 7p + 56p3 – 7p2 + 5p
(iv)4p2q2p2q24p4q2 – 4p2q4
(v)a + b + cabca2bc + ab2c + abc2

Q3: Find the product.

(i) (a2) × (2a22) × (4a26)

(ii) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578274545.gif

(iii)http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578282499.gif

(iv) x × x2 × x3 × x4

Answer:

(i) (a2) × (2a22) × (4a26) = 2 × 4 ×a2 × a22 × a26 = 8a50

(ii)

(iii) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578303665.gif

(iv) x × x2 × x3 × x4 = x10

Q4:

  1. Simplify 3x (4x – 5) + 3 and find its values for (i) x = 3, (ii) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578359309.gif.
  2. a (a2 + a + 1) + 5 and find its values for (i) a = 0, (ii) a = 1, (iii) a = – 1.

Answer:

(a) 3x (4x – 5) + 3 = 12x2 – 15x + 3

(i) For x = 3, 12x2 – 15x + 3 = 12 (3)2 – 15(3) + 3

= 108 – 45 + 3

= 66

  1. For
    http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578366018.gif
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578374076.gif

(b)a (a2 + a + 1) + 5 = a3 + a2 + a + 5

(i) For a = 0, a3 + a2 + a + 5 = 0 + 0 + 0 + 5 = 5

(ii) For a = 1, a3 + a2 + a + 5 = (1)3 + (1)2 + 1 + 5

= 1 + 1 + 1 + 5 = 8

(iii) For a = – 1, a3 + a2 + a + 5 = ( – 1)3 + ( – 1)2 + ( – 1) + 5

= – 1 + 1 – 1 + 5 = 4

Q5:

  1. Add: p (p q), q (q r) and r (r p)
  1. Add: 2x (z x y) and 2y (z y x)
  1. Subtract: 3l (l – 4m + 5n) from 4l (10n – 3m + 2l)
  1. Subtract: 3a (a + b + c) – 2b (a b + c) from 4c (- a + b + c)

Answer:

  1. First expression = p (p q) = p2pq Second expression = q (q r) = q2qr Third expression = r (r p) = r2pr Adding the three expressions, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578436725.gif

Therefore, the sum of the given expressions is p2 + q2 + r2pq qr rp.

  1. First expression = 2x (z x y) = 2xz – 2x2 – 2xy Second expression = 2y (z y x) = 2yz – 2y2 – 2yx Adding the two expressions, we obtain
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578445157.gif

Therefore, the sum of the given expressions is – 2x2 – 2y2 – 4xy + 2yz + 2zx. (c) 3l (l – 4m + 5n) = 3l2 – 12lm + 15ln

4l (10n – 3m + 2l) = 40ln – 12lm + 8l2 Subtracting these expressions, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578450756.gif

Therefore, the result is 5l2 + 25ln.

(d) 3a (a + b + c) – 2b (a b + c) = 3a2 +3ab + 3ac – 2ba + 2b2 – 2bc

= 3a2 + 2b2 + ab + 3ac – 2bc

4c ( – a + b + c) = – 4ac + 4bc + 4c2 Subtracting these expressions, we obtain

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152578457569.gif

Therefore, the result is – 3a2 – 2b2 + 4c2ab + 6bc – 7ac.

NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions Exercise 9.4 Solution

Here you’ll find NCERT Chapter 9 – Arithmetic Expressions Exercise 9.4 Solution.
Exercise 9.4: Solutions of Questions on Page Number: 148

Q1: Multiply the binomials.

(i) (2x + 5) and (4x – 3) (ii) (y – 8) and (3y – 4)

(iii) (2.5l – 0.5m) and (2.5l + 0.5m) (iv) (a + 3b) and (x + 5)

(v) (2pq + 3q2) and (3pq – 2q2)

(vi) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152579828098.gif

Answer:

(i) (2x + 5) × (4x – 3) = 2x × (4x – 3) + 5 × (4x – 3)

= 8x2 – 6x + 20x – 15

= 8x2 + 14x – 15 (By adding like terms)

(ii) (y – 8) × (3y – 4) = y × (3y – 4) – 8 × (3y – 4)

= 3y2 – 4y – 24y + 32

= 3y2 – 28y + 32 (By adding like terms)

(iii) (2.5l – 0.5m) × (2.5l + 0.5m) = 2.5l × (2.5l + 0.5m) – 0.5m (2.5l + 0.5m)

= 6.25l2 + 1.25lm – 1.25lm – 0.25m2

= 6.25l2 – 0.25m2

(iv) (a + 3b) × (x + 5) = a × (x + 5) + 3b × (x + 5)

= ax + 5a + 3bx + 15b

(v) (2pq + 3q2) × (3pq – 2q2) = 2pq × (3pq – 2q2) + 3q2 × (3pq – 2q2)

= 6p2q2 – 4pq3 + 9pq3 – 6q4

= 6p2q2 + 5pq3 – 6q4

(vi) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152579835916.gif
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152579841924.gif

Q2: Find the product.

(i) (5 – 2x) (3 + x) (ii) (x + 7y) (7x y)

(iii) (a2 + b) (a + b2) (iv) (p2q2) (2p + q)

Answer:

(i) (5 – 2x) (3 + x) = 5 (3 + x) – 2x (3 + x)

= 15 + 5x – 6x – 2x2

= 15 – x – 2x2

(ii) (x + 7y) (7x y) = x (7x y) + 7y (7x y)

= 7x2xy + 49xy – 7y2

= 7x2 + 48xy – 7y2

(iii) (a2 + b) (a + b2) = a2 (a + b2) + b (a + b2)

= a3 + a2b2 + ab + b3

(iv) (p2q2) (2p + q) = p2 (2p + q) – q2 (2p + q)

= 2p3 + p2q – 2pq2q3

Q3: Simplify.

(i) (x2 – 5) (x + 5) + 25

(ii) (a2 + 5) (b3 + 3) + 5

  1. (t + s2) (t2 – s)

(iv) (a + b) (c d) + (a b) (c + d) + 2 (ac + bd) (v) (x + y) (2x + y) + (x + 2y) (x y)

(vi) (x + y) (x2xy + y2)

(vii) (1.5x – 4y) (1.5x + 4y + 3) – 4.5x + 12y

(viii) (a + b + c) (a + b c)

Answer:

(i) (x2 – 5) (x + 5) + 25

= x2 (x + 5) – 5 (x + 5) + 25

= x3 + 5x2 – 5x – 25 + 25

= x3 + 5x2 – 5x

(ii) (a2 + 5) (b3 + 3) + 5

= a2 (b3 + 3) + 5 (b3 + 3) + 5

= a2b3 + 3a2 + 5b3 + 15 + 5

=a2b3 + 3a2 + 5b3 + 20

(iii) (t + s2) (t2 – s)

= t (t2s) + s2 (t2 – s)

= t3st + s2t2s3

(iv) (a + b) (c d) + (a b) (c + d) + 2 (ac + bd)

= a (c d) + b (c d) + a (c + d) – b (c + d) + 2 (ac + bd)

= ac ad + bc bd + ac + ad bc bd + 2ac + 2bd

= (ac + ac + 2ac) + (ad ad) + (bc bc) + (2bd bd bd)

= 4ac

(v) (x + y) (2x + y) + (x + 2y) (x y)

= x (2x + y) + y (2x + y) + x (x y) + 2y (x y)

= 2x2 + xy + 2xy + y2 + x2xy + 2xy – 2y2

= (2x2 + x2) + (y2 – 2y2) + (xy + 2xy xy + 2xy)

= 3x2y2 + 4xy

(vi) (x + y) (x2xy + y2)

= x (x2xy + y2) + y (x2xy + y2)

= x3x2y + xy2 + x2y xy2 + y3

= x3 + y3 + (xy2xy2) + (x2y x2y)

= x3 + y3

(vii) (1.5x – 4y) (1.5x + 4y + 3) – 4.5x + 12y

= 1.5x (1.5x + 4y + 3) – 4y (1.5x + 4y + 3) – 4.5x + 12y

= 2.25 x2 + 6xy + 4.5x – 6xy – 16y2 – 12y – 4.5x + 12y

= 2.25 x2 + (6xy – 6xy) + (4.5x – 4.5x) – 16y2 + (12y – 12y)

= 2.25x2 – 16y2

(viii) (a + b + c) (a + b c)

= a (a + b c) + b (a + b c) + c (a + b c)

= a2 + ab ac + ab + b2bc + ca + bc c2

= a2 + b2c2 + (ab + ab) + (bc bc) + (ca ca)

= a2 + b2c2 + 2ab

NCERT Solutions for Class 8 Maths Chapter 9 – Arithmetic Expressions Exercise 9.5 Solution

Here you’ll find NCERT Chapter 9 – Arithmetic Expressions Exercise 9.5 Solution.
Exercise 9.5: Solutions of Questions on Page Number: 151

Q1: Use a suitable identity to get each of the following products.

(i) (x + 3) (x + 3) (ii) (2y + 5) (2y + 5)

(iii) (2a – 7) (2a – 7) (iv) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580025098.gif

(v) (1.1m – 0.4) (1.1 m + 0.4) (vi) (a2 + b2) ( – a2 + b2)

(vii) (6x – 7) (6x + 7) (viii) ( – a + c) ( – a + c) (ix) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580049019.gif(x) (7a – 9b) (7a – 9b)

Answer:

The products will be as follows. (i) (x + 3) (x + 3) = (x + 3)2

= (x)2 + 2(x) (3) + (3)2 [(a + b)2 = a2 + 2ab + b2]

= x2 + 6x + 9

(ii) (2y + 5) (2y + 5) = (2y + 5)2

= (2y)2 + 2(2y) (5) + (5)2 [(a + b)2 = a2 + 2ab + b2]

= 4y2 + 20y + 25

(iii) (2a – 7) (2a – 7) = (2a – 7)2

= (2a)2 – 2(2a) (7) + (7)2 [(a b)2 = a2 – 2ab + b2]

= 4a2 – 28a + 49

(iv) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580054786.gif

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580060569.gif[(a b)2 = a2 – 2ab + b2]
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580066565.gif

(v) (1.1m – 0.4) (1.1 m + 0.4)

= (1.1m)2 – (0.4)2 [(a + b) (a b) = a2b2]

= 1.21m2 – 0.16

(vi) (a2 + b2) ( – a2 + b2) = (b2 + a2) (b2a2)

= (b2)2 – (a2)2 [(a + b) (a b) = a2b2]

= b4a4

(vii) (6x – 7) (6x + 7) = (6x)2 – (7)2 [(a + b) (a b) = a2b2]

= 36x2 – 49

(viii) ( – a + c) ( – a + c) = ( – a + c)2

= ( – a)2 + 2( – a) (c) + (c)2 [(a + b)2 = a2 + 2ab + b2]

= a2 – 2ac + c2

(ix)

http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580086717.gif[(a + b)2 = a2 + 2ab + b2]
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+1415258009187.gif

(x) (7a – 9b) (7a – 9b) = (7a – 9b)2

= (7a)2 – 2(7a)(9b) + (9b)2 [(a b)2 = a2 – 2ab + b2]

= 49a2 – 126ab + 81b2

Q2: Use the identity (x + a) (x + b) = x2 + (a + b)x + ab to find the following products.

(i) (x + 3) (x + 7) (ii) (4x +5) (4x + 1)

(iii) (4x – 5) (4x – 1) (iv) (4x + 5) (4x – 1)

(v) (2x +5y) (2x + 3y) (vi) (2a2 +9) (2a2 + 5)

(vii) (xyz – 4) (xyz – 2)

Answer:

The products will be as follows.

(i) (x + 3) (x + 7) = x2 + (3 + 7) x + (3) (7)

= x2 + 10x + 21

(ii) (4x + 5) (4x + 1) = (4x)2 + (5 + 1) (4x) + (5) (1)

= 16x2 + 24x + 5

(iii)http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580114083.gif

= 16x2 – 24x + 5

(iv) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580138549.gif

= 16x2 + 16x – 5

(v) (2x +5y) (2x + 3y) = (2x)2 + (5y + 3y) (2x) + (5y) (3y)

= 4x2 + 16xy + 15y2

(vi) (2a2 +9) (2a2 + 5) = (2a2)2 + (9 + 5) (2a2) + (9) (5)

= 4a4 + 28a2 + 45

(vii) (xyz – 4) (xyz – 2)

= http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580147682.gif

= x2y2z2 – 6xyz + 8

Q3: Find the following squares by suing the identities.
(i) (b – 7)2 (ii) (xy + 3z)2 (iii) (6x2 – 5y)2

(iv) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+1415258019733.gif(v) (0.4p – 0.5q)2 (vi) (2xy + 5y)2

Answer:

(i) (b – 7)2 = (b)2 – 2(b) (7) + (7)2 [(a b)2 = a2 – 2ab + b2]

= b2 – 14b + 49

(ii) (xy + 3z)2 = (xy)2 + 2(xy) (3z) + (3z)2 [(a + b)2 = a2 + 2ab + b2]

= x2y2 + 6xyz + 9z2

(iii) (6x2 – 5y)2 = (6x2)2 – 2(6x2) (5y) + (5y)2 [(a b)2 = a2 – 2ab + b2]

= 36x4 – 60x2y + 25y2

(iv) [(a + b)2 = a2 + 2ab + b2]
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580214471.gif

(v) (0.4p – 0.5q)2 = (0.4p)2 – 2 (0.4p) (0.5q) + (0.5q)2

[(a b)2 = a2 – 2ab + b2]

= 0.16p2 – 0.4pq + 0.25q2

(vi) (2xy + 5y)2 = (2xy)2 + 2(2xy) (5y) + (5y)2

[(a + b)2 = a2 + 2ab + b2]

= 4x2y2 + 20xy2 + 25y2

Q4: Simplify.

(i) (a2b2)2 (ii) (2x +5)2 – (2x – 5)2

(iii) (7m – 8n)2 + (7m + 8n)2 (iv) (4m + 5n)2 + (5m + 4n)2

(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2

(vi) (ab + bc)2 – 2ab2c (vii) (m2n2m)2 + 2m3n2

Answer:

(i) (a2b2)2 = (a2)2 – 2(a2) (b2) + (b2)2 [(a b)2 = a2 – 2ab + b2 ]

= a4 – 2a2b2 + b4

(ii) (2x +5)2 – (2x – 5)2 = (2x)2 + 2(2x) (5) + (5)2 – [(2x)2 – 2(2x) (5) + (5)2]

[(a b)2 = a2 – 2ab + b2] [(a + b)2 = a2 + 2ab + b2]

= 4x2 + 20x + 25 – [4x2 – 20x + 25]

= 4x2 + 20x + 25 – 4x2 + 20x – 25 = 40x

(iii) (7m – 8n)2 + (7m + 8n)2

= (7m)2 – 2(7m) (8n) + (8n)2 + (7m)2 + 2(7m) (8n) + (8n)2

[(a b)2 = a2 – 2ab + b2 and (a + b)2 = a2 + 2ab + b2]

= 49m2 – 112mn + 64n2 + 49m2 + 112mn + 64n2

= 98m2 + 128n2

(iv) (4m + 5n)2 + (5m + 4n)2

= (4m)2 + 2(4m) (5n) + (5n)2 + (5m)2 + 2(5m) (4n) + (4n)2

[ (a + b)2 = a2 + 2ab + b2]

= 16m2 + 40mn + 25n2 + 25m2 + 40mn + 16n2

= 41m2 + 80mn + 41n2

(v) (2.5p – 1.5q)2 – (1.5p – 2.5q)2

= (2.5p)2 – 2(2.5p) (1.5q) + (1.5q)2 – [(1.5p)2 – 2(1.5p)(2.5q) + (2.5q)2]

[(a b)2 = a2 – 2ab + b2 ]

= 6.25p2 – 7.5pq + 2.25q2 – [2.25p2 – 7.5pq + 6.25q2]

= 6.25p2 – 7.5pq + 2.25q2 – 2.25p2 + 7.5pq – 6.25q2]

= 4p2 – 4q2

  1. (ab + bc)2 – 2ab2c

= (ab)2 + 2(ab)(bc) + (bc)2 – 2ab2c [(a + b)2 = a2 + 2ab + b2 ]

= a2b2 + 2ab2c + b2c2 – 2ab2c

= a2b2 + b2c2

  1. (m2n2m)2 + 2m3n2

= (m2)2 – 2(m2) (n2m) + (n2m)2 + 2m3n2 [(a b)2 = a2 – 2ab + b2 ]

= m4 – 2m3n2 + n4m2 + 2m3n2

= m4 + n4m2

Q5: Show that

(i) (3x + 7)2 – 84x = (3x – 7)2

(ii) (9p – 5q)2 + 180pq = (9p + 5q)2

(iii) http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580439799.gif

(iv) (4pq + 3q)2 – (4pq – 3q)2 = 48pq2

(v) (a b) (a + b) + (b c) (b + c) + (c a) (c + a) = 0

Answer:

(i) L.H.S = (3x + 7)2 – 84x

= (3x)2 + 2(3x)(7) + (7)2 – 84x

= 9x2 + 42x + 49 – 84x

= 9x2 – 42x + 49

R.H.S = (3x – 7)2 = (3x)2 – 2(3x)(7) +(7)2

= 9x2 – 42x + 49

L.H.S = R.H.S

(ii) L.H.S = (9p – 5q)2 + 180pq

= (9p)2 – 2(9p)(5q) + (5q)2 – 180pq

= 81p2 – 90pq + 25q2 + 180pq

= 81p2 + 90pq + 25q2

R.H.S = (9p + 5q)2

= (9p)2 + 2(9p)(5q) + (5q)2

= 81p2 + 90pq + 25q2

L.H.S = R.H.Shttp://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580446923.gif

(iii) L.H.S =
http://www.schoollamp.com/images/ncert-solutions/maths+algebraic+expressions+and+identities+cbse+14152580453057.gif

(iv) L.H.S = (4pq + 3q)2 – (4pq – 3q)2

= (4pq)2 + 2(4pq)(3q) + (3q)2 – [(4pq)2 – 2(4pq) (3q) + (3q)2]

= 16p2q2 + 24pq2 + 9q2 – [16p2q2 – 24pq2 + 9q2]

= 16p2q2 + 24pq2 + 9q2 – 16p2q2 + 24pq2 – 9q2

= 48pq2 = R.H.S

(v) L.H.S = (a b) (a + b) + (b c) (b + c) + (c a) (c + a)

= (a2b2) + (b2c2) + (c2a2) = 0 = R.H.S.

Q6: Using identities, evaluate.

(i) 712 (ii) 992 (iii) 1022 (iv) 9982

(v) (5.2)2 (vi) 297 x 303 (vii) 78 x 82

(viii) 8.92 (ix) 1.05 x 9.5

Answer:

(i) 712 = (70 + 1)2

= (70)2 + 2(70) (1) + (1)2 [(a + b)2 = a2 + 2ab + b2 ]

= 4900 + 140 + 1 = 5041

(ii) 992 = (100 – 1)2

= (100)2 – 2(100) (1) + (1)2 [(a b)2 = a2 – 2ab + b2 ]

= 10000 – 200 + 1 = 9801

(iii) 1022 = (100 + 2)2

= (100)2 + 2(100)(2) + (2)2 [(a + b)2 = a2 + 2ab + b2 ]

= 10000 + 400 + 4 = 10404

(iv) 9982 = (1000 – 2)2

= (1000)2 – 2(1000)(2) + (2)2 [(a b)2 = a2 – 2ab + b2 ]

= 1000000 – 4000 + 4 = 996004

(v) (5.2)2 = (5.0 + 0.2)2

= (5.0)2 + 2(5.0) (0.2) + (0.2)2 [(a + b)2 = a2 + 2ab + b2 ]

= 25 + 2 + 0.04 = 27.04

(vi) 297 x 303 = (300 – 3) x (300 + 3)

= (300)2 – (3)2 [(a + b) (a b) = a2b2]

= 90000 – 9 = 89991

(vii) 78 x 82 = (80 – 2) (80 + 2)

= (80)2 – (2)2 [(a + b) (a b) = a2b2]

= 6400 – 4 = 6396

(viii) 8.92 = (9.0 – 0.1)2

= (9.0)2 – 2(9.0) (0.1) + (0.1)2 [(a b)2 = a2 – 2ab + b2 ]

= 81 – 1.8 + 0.01 = 79.21

(ix) 1.05 x 9.5 = 1.05 x 0.95 x 10

= (1 + 0.05) (1- 0.05) x 10

= [(1)2 – (0.05)2] x 10

= [1 – 0.0025] x 10 [(a + b) (a b) = a2b2]

= 0.9975 x 10 = 9.975

Q7:

Using a2b2 = (a + b) (a b), find

(i) 512 – 492 (ii) (1.02)2 – (0.98)2 (iii) 1532 – 1472

(iv) 12.12 – 7.92

Answer:

(i) 512 – 492 = (51 + 49) (51 – 49)

= (100) (2) = 200

(ii) (1.02)2 – (0.98)2 = (1.02 + 0.98) (1.02 – 0.98)

= (2) (0.04) = 0.08

(iii) 1532 – 1472 = (153 + 147) (153 – 147)

= (300) (6) = 1800

(iv) 12.12 – 7.92 = (12.1 + 7.9) (12.1 – 7.9)

= (20.0) (4.2) = 84

Q8: Using (x + a) (x + b) = x2 + (a + b) x + ab, find

(i) 103 x 104 (ii) 5.1 x 5.2 (iii) 103 x 98 (iv) 9.7 x 9.8

Answer:

(i) 103 x 104 = (100 + 3) (100 + 4)

= (100)2 + (3 + 4) (100) + (3) (4)

= 10000 + 700 + 12 = 10712

(ii) 5.1 x 5.2 = (5 + 0.1) (5 + 0.2)

= (5)2 + (0.1 + 0.2) (5) + (0.1) (0.2)

= 25 + 1.5 + 0.02 = 26.52

(iii) 103 x 98 = (100 + 3) (100 – 2)

= (100)2 + [3 + (- 2)] (100) + (3) (- 2)

= 10000 + 100 – 6

= 10094

(iv) 9.7 x 9.8 = (10 – 0.3) (10 – 0.2)

= (10)2 + [(- 0.3) + (- 0.2)] (10) + (- 0.3) (- 0.2)

= 100 + (- 0.5)10 + 0.06 = 100.06 – 5 = 95.06.

NCERT Class 8 Maths All Chapters Solution 

Chapter 1: Rational Numbers

Chapter 2: Linear Equations in One Variable

Chapter 3: Understanding Quadrilaterals

Chapter 4: Practical Geometry

Chapter 5: Data Handling

Chapter 6: Squares and Square root

Chapter 7: Cubes and Cube Roots

Chapter 8: Comparing Quantities

Chapter 9: Arithmetic Expressions

Chapter 10: Visualising Solid Shapes

Chapter 11: Mensuration

Chapter 12: Exponents and Powers

Chapter 13: Direct and Inverse Proportions

Chapter 14: Factorisation

Chapter 15: Introduction to Graphs

Chapter 16: Playing With Numbers